MATH 409 Advanced Calculus I

Lecture 11: More on continuous functions.

Continuity

Definition. Given a set $E \subset \mathbb{R}$, a function $f : E \to \mathbb{R}$, and a point $c \in E$, the function f is **continuous at** c if for any $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that $|x - c| < \delta$ and $x \in E$ imply $|f(x) - f(c)| < \varepsilon$.

We say that the function f is **continuous on** a set $E_0 \subset E$ if f is continuous at every point $c \in E_0$. The function f is **continuous** if it is continuous on the entire domain E.

Theorem A function $f: E \to \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\{x_n\}$ of elements of E, $x_n \to c$ as $n \to \infty$ implies $f(x_n) \to f(c)$ as $n \to \infty$.

Basic examples:

- Constant function: f(x) = a for all $x \in \mathbb{R}$ and some $a \in \mathbb{R}$.
- Identity function: $f(x) = x, x \in \mathbb{R}$.

Theorem Suppose that functions $f, g : E \to \mathbb{R}$ are both continuous at a point $c \in E$. Then the functions f + g, f - g, and fg are also continuous at c. If, additionally, $g(c) \neq 0$, then the function f/g is continuous at c as well.

Examples of continuous functions:

• Power function: $f(x) = x^n$, $x \in \mathbb{R}$, where $n \in \mathbb{N}$. Since the identity function is continuous and $x^{k+1} = x^k x$ for all $k \in \mathbb{N}$, it follows by induction on *n* that *f* is continuous.

• Polynomial: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. Since constant functions and power functions are continuous, so are the functions $f_k(x) = a_k x^k$, $x \in \mathbb{R}$. Then f is continuous as a finite sum of continuous functions.

• Rational function: f(x) = p(x)/q(x), where p and q are polynomials.

Since p and q are continuous, the function f is continuous on its entire domain $\{x \in \mathbb{R} \mid q(x) \neq 0\}$.

Extreme values and intermediate values

Theorem If I = [a, b] is a closed, bounded interval of the real line, then any continuous function $f : I \to \mathbb{R}$ is bounded and attains its extreme values (maximum and minimum) on I.

Theorem If a function $f : [a, b] \to \mathbb{R}$ is continuous then any number y_0 that lies between f(a) and f(b) is a value of f, i.e., $y_0 = f(x_0)$ for some $x_0 \in [a, b]$.

Corollary If a real-valued function f is continuous on a closed bounded interval [a, b], then the image f([a, b]) is also a closed bounded interval.

Theorem Any polynomial of odd degree has at least one real root.

Proof: Let $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0$ be a polynomial of positive degree *n*. Note that $a_n \neq 0$. For any $x \neq 0$ we have

$$\frac{p(x)}{a_nx^n}=1+\frac{a_{n-1}}{a_nx}+\cdots+\frac{a_1}{a_nx^{n-1}}+\frac{a_0}{a_nx^n},$$

which converges to 1 as $x \to \pm \infty$. As a consequence, there exists C > 0 such that $p(x)/(a_nx^n) \ge 1/2$ if $|x| \ge C$. In particular, the numbers p(x) and a_nx^n are of the same sign if $|x| \ge C$. In the case *n* is odd, this implies that one of the numbers p(C) and p(-C) is positive while the other is negative. By the Intermediate Value Theorem, we have p(x) = 0 for some $x \in [-C, C]$.

Given a function $f : (a, b) \to \mathbb{R}$ and a point $c \in (a, b)$, let f_1 denote the restriction of f to the interval (a, c] and f_2 denote the restriction of f to [c, b).

Theorem The function f is continuous if and only if both restrictions f_1 and f_2 are continuous.

Proof: For any $x \in (a, c)$, the continuity of f at x is equivalent to the continuity of f_1 at x. Likewise, the continuity of f at a point $y \in (c, b)$ is equivalent to the continuity of f_2 at y. The function f is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c$. The restriction f_1 is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c-$. The restriction f_2 is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c-$. The restriction f_2 is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c+$. Therefore f is continuous at c if and only if both f_1 and f_2 are continuous at c.

Example. The function f(x) = |x| is continuous on \mathbb{R} .

Indeed, f concides with the function g(x) = x on $[0, \infty)$ and with the function h(x) = -x on $(-\infty, 0]$.

Continuity of the composition

Let $f: E_1 \to \mathbb{R}$ and $g: E_2 \to \mathbb{R}$ be two functions. If $f(E_1) \subset E_2$, then the composition $(g \circ f)(x) = g(f(x))$ is a well defined function on E_1 .

Theorem If f is continuous at a point $c \in E_1$ and g is continuous at f(c), then $g \circ f$ is continuous at c.

Proof: Let us use the sequential characterization of continuity. Consider an arbitrary sequence $\{x_n\} \subset E_1$ converging to c. We have to show that

$$(g \circ f)(x_n)
ightarrow (g \circ f)(c)$$
 as $n
ightarrow \infty$.

Since the function f is continuous at c, we obtain that $f(x_n) \to f(c)$ as $n \to \infty$. Moreover, all elements of the sequence $\{f(x_n)\}$ belong to the set E_2 . Since the function g is continuous at f(c), we obtain that $g(f(x_n)) \to g(f(c))$ as $n \to \infty$.

Examples of continuous functions

• If a function $f: E \to \mathbb{R}$ is continuous at a point $c \in E$, then a function $g(x) = |f(x)|, x \in E$, is also continuous at c.

Indeed, the function g is the composition of f with the continuous function h(x) = |x|.

• If functions $f, g : E \to \mathbb{R}$ are continuous at a point $c \in E$, then functions $\max(f, g)$ and $\min(f, g)$ are also continuous at c.

Indeed, $2\max(f(x), g(x)) = f(x) + g(x) + |f(x) - g(x)|$ and $2\min(f(x), g(x)) = f(x) + g(x) - |f(x) - g(x)|$ for all $x \in E$.

Trigonometric functions

$$\sin \theta = y$$
$$\cos \theta = x$$
$$\tan \theta = y/x$$

Theorem $0 \leq \sin \theta \leq \theta \leq \tan \theta$ for $\theta \in [0, \pi/2)$.

$$\begin{aligned} \sin \theta &= |\text{segment } AB| \\ \theta &= |\text{arc } CB| \\ \tan \theta &= |\text{segment } CD| \end{aligned}$$

Examples of continuous functions

•
$$f(x) = \sin x, x \in \mathbb{R}$$
.

We know that $0 \leq \sin \theta \leq \theta$ for $\theta \in [0, \pi/2)$. Since $\sin(-\theta) = -\sin \theta$, we get $|\sin \theta| \leq |\theta|$ if $|\theta| < \pi/2$. In the case $|\theta| \geq \pi/2$, this estimate holds too as $|\sin \theta| \leq 1 < \pi/2$. Now, using the trigonometric formula

$$\sin x - \sin c = 2 \sin \frac{x-c}{2} \cos \frac{x+c}{2},$$

we obtain $|\sin x - \sin c| \le 2 |\sin \frac{x-c}{2}| |\cos \frac{x+c}{2}| \le 2 |\frac{x-c}{2}|$ = |x - c|. It follows that $\sin x \to \sin c$ as $x \to c$ for every $c \in \mathbb{R}$. That is, the function $\sin x$ is continuous.

•
$$f(x) = \cos x, x \in \mathbb{R}$$
.

Since $\cos x = \sin(x + \pi/2)$ for all $x \in \mathbb{R}$, the function f is a composition of two continuous functions, $g(x) = x + \pi/2$ and $h(x) = \sin x$. Therefore it is continuous as well.

Examples of continuous functions

•
$$f(x) = \tan x$$
.

Since $f(x) = \frac{\sin x}{\cos x}$, the function f is continuous on its entire domain $\mathbb{R} \setminus \{x \in \mathbb{R} \mid \cos x = 0\} = \mathbb{R} \setminus \{\pi/2 + \pi k \mid k \in \mathbb{Z}\}.$

•
$$f(0) = 1$$
 and $f(x) = \frac{\sin x}{x}$ for $x \neq 0$.

Since sin x and the identity functions are continuous, it follows that f is continuous on $\mathbb{R} \setminus \{0\}$. Further, we know that $0 \le \sin x \le x \le \tan x$ for $0 \le x < \pi/2$. Therefore $\cos x \le \frac{\sin x}{x} \le 1$. Since $\cos 0 = 1$, the Squeeze Theorem implies that $f(x) \to 1$ as $x \to 0+$. The left-hand limit at 0 is the same as f(-x) = f(x) for all $x \in \mathbb{R}$. Thus the function f is continuous at 0 as well.

Monotone functions

Let $f : E \to \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$. *Definition.* The function f is called **increasing** if, for any $x, y \in E, x < y$ implies $f(x) \le f(y)$. It is called **strictly increasing** if x < y implies f(x) < f(y). Likewise, f is **decreasing** if x < y implies $f(x) \ge f(y)$ and **strictly decreasing** x < y implies f(x) > f(y) for all $x, y \in E$. Increasing and decreasing functions are called **monotone**. Strictly incresing and strictly decreasing functions are called **strictly monotone**.

Theorem 2 A monotone function f defined on an interval I is continuous if and only if the image f(I) is also an interval. **Theorem 3** A continuous function defined on a closed interval is one-to-one if and only if it is strictly monotone.

Continuity of the inverse function

Suppose $f : E \to \mathbb{R}$ is a strictly monotone function defined on a set $E \subset \mathbb{R}$. Then f is one-to-one on E so that the **inverse function** f^{-1} is a well defined function on f(E).

Theorem If the domain *E* of a strictly monotone function *f* is a closed interval and *f* is continuous on *E*, then the image f(E) is also a closed interval, and the inverse function f^{-1} is strictly monotone and continuous on f(E).

Proof: Since f is continuous on the closed interval E, it follows from the Extreme Value and Intermediate Value theorems that f(E) is also a closed interval. The inverse function f^{-1} is strictly monotone since f is strictly monotone. By construction, f^{-1} maps the interval f(E) onto the interval E, which implies that f^{-1} is continuous.

Examples

• Power function $f(x) = x^n$, $x \in \mathbb{R}$, where $n \in \mathbb{N}$.

The function f is continuous on \mathbb{R} . It is strictly increasing on the interval $[0,\infty)$ and $f([0,\infty)) = [0,\infty)$. In the case n is odd, the function f is strictly increasing on \mathbb{R} and $f(\mathbb{R}) = \mathbb{R}$. We conclude that the inverse function $f^{-1}(x) = x^{1/n}$ is a continuous function on $[0,\infty)$ if n is even and a continuous function on \mathbb{R} if n is odd.

• $f(x) = x^n$, $x \in \mathbb{R} \setminus \{0\}$, where $n \in \mathbb{Z}$, n < 0.

The function f is strictly decreasing on $(0, \infty)$. It is continuous on $(0, \infty)$ and maps this interval onto itself. Therefore the inverse function $f^{-1}(x) = x^{1/n}$ is a continuous function on $(0, \infty)$.