MATH 409
Advanced Calculus I

Lecture 11:
 More on continuous functions.

Continuity

Definition. Given a set $E \subset \mathbb{R}$, a function $f: E \rightarrow \mathbb{R}$, and a point $c \in E$, the function f is continuous at c if for any $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-c|<\delta$ and $x \in E$ imply $|f(x)-f(c)|<\varepsilon$.
We say that the function f is continuous on a set $E_{0} \subset E$ if f is continuous at every point $c \in E_{0}$. The function f is continuous if it is continuous on the entire domain E.

Theorem A function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of E, $x_{n} \rightarrow c$ as $n \rightarrow \infty$ implies $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$.

Basic examples:

- Constant function: $f(x)=a$ for all $x \in \mathbb{R}$ and some $a \in \mathbb{R}$.
- Identity function: $f(x)=x, x \in \mathbb{R}$.

Theorem Suppose that functions $f, g: E \rightarrow \mathbb{R}$ are both continuous at a point $c \in E$. Then the functions $f+g$, $f-g$, and $f g$ are also continuous at c. If, additionally, $g(c) \neq 0$, then the function f / g is continuous at c as well.

Examples of continuous functions:

- Power function: $f(x)=x^{n}, x \in \mathbb{R}$, where $n \in \mathbb{N}$.

Since the identity function is continuous and $x^{k+1}=x^{k} x$ for all $k \in \mathbb{N}$, it follows by induction on n that f is continuous.

- Polynomial: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$.

Since constant functions and power functions are continuous, so are the functions $f_{k}(x)=a_{k} x^{k}, x \in \mathbb{R}$. Then f is continuous as a finite sum of continuous functions.

- Rational function: $f(x)=p(x) / q(x)$, where p and q are polynomials.
Since p and q are continuous, the function f is continuous on its entire domain $\{x \in \mathbb{R} \mid q(x) \neq 0\}$.

Extreme values and intermediate values

Theorem If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: I \rightarrow \mathbb{R}$ is bounded and attains its extreme values (maximum and minimum) on I.

Theorem If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous then any number y_{0} that lies between $f(a)$ and $f(b)$ is a value of f, i.e., $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in[a, b]$.

Corollary If a real-valued function f is continuous on a closed bounded interval $[a, b]$, then the image $f([a, b])$ is also a closed bounded interval.

Theorem Any polynomial of odd degree has at

 least one real root.Proof: Let $p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}$ be a polynomial of positive degree n. Note that $a_{n} \neq 0$. For any $x \neq 0$ we have

$$
\frac{p(x)}{a_{n} x^{n}}=1+\frac{a_{n-1}}{a_{n} x}+\cdots+\frac{a_{1}}{a_{n} x^{n-1}}+\frac{a_{0}}{a_{n} x^{n}},
$$

which converges to 1 as $x \rightarrow \pm \infty$. As a consequence, there exists $C>0$ such that $p(x) /\left(a_{n} x^{n}\right) \geq 1 / 2$ if $|x| \geq C$. In particular, the numbers $p(x)$ and $a_{n} x^{n}$ are of the same sign if $|x| \geq C$. In the case n is odd, this implies that one of the numbers $p(C)$ and $p(-C)$ is positive while the other is negative. By the Intermediate Value Theorem, we have $p(x)=0$ for some $x \in[-C, C]$.

Given a function $f:(a, b) \rightarrow \mathbb{R}$ and a point $c \in(a, b)$, let f_{1} denote the restriction of f to the interval $(a, c]$ and f_{2} denote the restriction of f to $[c, b)$.

Theorem The function f is continuous if and only if both restrictions f_{1} and f_{2} are continuous.
Proof: For any $x \in(a, c)$, the continuity of f at x is equivalent to the continuity of f_{1} at x. Likewise, the continuity of f at a point $y \in(c, b)$ is equivalent to the continuity of f_{2} at y. The function f is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c$. The restriction f_{1} is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c-$. The restriction f_{2} is continuous at c if $f(x) \rightarrow f(c)$ as $x \rightarrow c+$. Therefore f is continuous at c if and only if both f_{1} and f_{2} are continuous at c.

Example. The function $f(x)=|x|$ is continuous on \mathbb{R}. Indeed, f concides with the function $g(x)=x$ on $[0, \infty)$ and with the function $h(x)=-x$ on $(-\infty, 0]$.

Continuity of the composition

Let $f: E_{1} \rightarrow \mathbb{R}$ and $g: E_{2} \rightarrow \mathbb{R}$ be two functions. If $f\left(E_{1}\right) \subset E_{2}$, then the composition $(g \circ f)(x)=g(f(x))$ is a well defined function on E_{1}.

Theorem If f is continuous at a point $c \in E_{1}$ and g is continuous at $f(c)$, then $g \circ f$ is continuous at c.
Proof: Let us use the sequential characterization of continuity. Consider an arbitrary sequence $\left\{x_{n}\right\} \subset E_{1}$ converging to c. We have to show that

$$
(g \circ f)\left(x_{n}\right) \rightarrow(g \circ f)(c) \text { as } n \rightarrow \infty .
$$

Since the function f is continuous at c, we obtain that $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$. Moreover, all elements of the sequence $\left\{f\left(x_{n}\right)\right\}$ belong to the set E_{2}. Since the function g is continuous at $f(c)$, we obtain that $g\left(f\left(x_{n}\right)\right) \rightarrow g(f(c))$ as $n \rightarrow \infty$.

Examples of continuous functions

- If a function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$, then a function $g(x)=|f(x)|, x \in E$, is also continuous at c.

Indeed, the function g is the composition of f with the continuous function $h(x)=|x|$.

- If functions $f, g: E \rightarrow \mathbb{R}$ are continuous at a point $c \in E$, then functions $\max (f, g)$ and $\min (f, g)$ are also continuous at c.
Indeed, $2 \max (f(x), g(x))=f(x)+g(x)+|f(x)-g(x)|$ and $2 \min (f(x), g(x))=f(x)+g(x)-|f(x)-g(x)|$ for all $x \in E$.

Trigonometric functions

$$
\begin{aligned}
& \sin \theta=y \\
& \cos \theta=x \\
& \tan \theta=y / x
\end{aligned}
$$

Theorem $0 \leq \sin \theta \leq \theta \leq \tan \theta$ for $\theta \in[0, \pi / 2)$.

$\sin \theta=\mid$ segment $A B \mid$
$\theta=|\operatorname{arc} C B|$
$\tan \theta=\mid$ segment $C D \mid$

Examples of continuous functions

- $f(x)=\sin x, x \in \mathbb{R}$.

We know that $0 \leq \sin \theta \leq \theta$ for $\theta \in[0, \pi / 2)$. Since $\sin (-\theta)=-\sin \theta$, we get $|\sin \theta| \leq|\theta|$ if $|\theta|<\pi / 2$. In the case $|\theta| \geq \pi / 2$, this estimate holds too as $|\sin \theta| \leq 1<\pi / 2$. Now, using the trigonometric formula

$$
\sin x-\sin c=2 \sin \frac{x-c}{2} \cos \frac{x+c}{2},
$$

we obtain $|\sin x-\sin c| \leq 2\left|\sin \frac{x-c}{2}\right|\left|\cos \frac{x+c}{2}\right| \leq 2\left|\frac{x-c}{2}\right|$ $=|x-c|$. It follows that $\sin x \rightarrow \sin c$ as $x \rightarrow c$ for every $c \in \mathbb{R}$. That is, the function $\sin x$ is continuous.

- $f(x)=\cos x, x \in \mathbb{R}$.

Since $\cos x=\sin (x+\pi / 2)$ for all $x \in \mathbb{R}$, the function f is a composition of two continuous functions, $g(x)=x+\pi / 2$ and $h(x)=\sin x$. Therefore it is continuous as well.

Examples of continuous functions

- $f(x)=\tan x$.

Since $f(x)=\frac{\sin x}{\cos x}$, the function f is continuous on its entire domain $\mathbb{R} \backslash\{x \in \mathbb{R} \mid \cos x=0\}=\mathbb{R} \backslash\{\pi / 2+\pi k \mid k \in \mathbb{Z}\}$.

- $f(0)=1$ and $f(x)=\frac{\sin x}{x}$ for $x \neq 0$.

Since $\sin x$ and the identity functions are continuous, it follows that f is continuous on $\mathbb{R} \backslash\{0\}$. Further, we know that $0 \leq \sin x \leq x \leq \tan x$ for $0 \leq x<\pi / 2$. Therefore $\cos x \leq \frac{\sin x}{x} \leq 1$. Since $\cos 0=1$, the Squeeze Theorem implies that $f(x) \rightarrow 1$ as $x \rightarrow 0+$. The left-hand limit at 0 is the same as $f(-x)=f(x)$ for all $x \in \mathbb{R}$. Thus the function f is continuous at 0 as well.

Monotone functions

Let $f: E \rightarrow \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$.
Definition. The function f is called increasing if, for any $x, y \in E, x<y$ implies $f(x) \leq f(y)$. It is called strictly increasing if $x<y$ implies $f(x)<f(y)$. Likewise, f is decreasing if $x<y$ implies $f(x) \geq f(y)$ and strictly decreasing $x<y$ implies $f(x)>f(y)$ for all $x, y \in E$. Increasing and decreasing functions are called monotone. Strictly incresing and strictly decreasing functions are called strictly monotone.

Theorem 1 Any monotone function defined on an open interval can have only jump discontinuities.
Theorem 2 A monotone function f defined on an interval I is continuous if and only if the image $f(I)$ is also an interval.
Theorem 3 A continuous function defined on a closed interval is one-to-one if and only if it is strictly monotone.

Continuity of the inverse function

Suppose $f: E \rightarrow \mathbb{R}$ is a strictly monotone function defined on a set $E \subset \mathbb{R}$. Then f is one-to-one on E so that the inverse function f^{-1} is a well defined function on $f(E)$.

Theorem If the domain E of a strictly monotone function f is a closed interval and f is continuous on E, then the image $f(E)$ is also a closed interval, and the inverse function f^{-1} is strictly monotone and continuous on $f(E)$.

Proof: Since f is continuous on the closed interval E, it follows from the Extreme Value and Intermediate Value theorems that $f(E)$ is also a closed interval. The inverse function f^{-1} is strictly monotone since f is strictly monotone. By construction, f^{-1} maps the interval $f(E)$ onto the interval E, which implies that f^{-1} is continuous.

Examples

- Power function $f(x)=x^{n}, x \in \mathbb{R}$, where $n \in \mathbb{N}$.
The function f is continuous on \mathbb{R}. It is strictly increasing on the interval $[0, \infty)$ and $f([0, \infty))=[0, \infty)$. In the case n is odd, the function f is strictly increasing on \mathbb{R} and $f(\mathbb{R})=\mathbb{R}$. We conclude that the inverse function $f^{-1}(x)=x^{1 / n}$ is a continuous function on $[0, \infty)$ if n is even and a continuous function on \mathbb{R} if n is odd.
- $f(x)=x^{n}, x \in \mathbb{R} \backslash\{0\}$, where $n \in \mathbb{Z}, n<0$.

The function f is strictly decreasing on $(0, \infty)$. It is continuous on $(0, \infty)$ and maps this interval onto itself. Therefore the inverse function $f^{-1}(x)=x^{1 / n}$ is a continuous function on $(0, \infty)$.

