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Advanced Calculus I

Lecture 12:
Uniform continuity.

Exponential functions.



Uniform continuity

Definition. A function f : E → R defined on a set
E ⊂ R is called uniformly continuous on E if for

every ε > 0 there exists δ = δ(ε) > 0 such that
|x − y | < δ and x , y ∈ E imply |f (x)− f (y)| < ε.

Recall that the function f is continuous at a point

y ∈ E if for every ε > 0 there exists
δ = δ(y , ε) > 0 such that |x − y | < δ and x ∈ E

imply |f (x)− f (y)| < ε.

Therefore the uniform continuity of f is a stronger
property than the continuity of f on E .



Examples

• Constant function f (x) = a is uniformly
continuous on R.

Indeed, |f (x)− f (y )| = 0 < ε for any ε > 0 and x , y ∈ R.

• Identity function f (x) = x is uniformly
continuous on R.

Since f (x)− f (y ) = x − y , we have |f (x)− f (y )| < ε
whenever |x − y | < ε.

• The sine function f (x) = sin x is uniformly

continuous on R.

It was shown in the previous lecture that
| sin x − sin y | ≤ |x − y | for all x , y ∈ R. Therefore
|f (x)− f (y )| < ε whenever |x − y | < ε.



Lipschitz functions

Definition. A function f : E → R is called a
Lipschitz function if there exists a constant L > 0

such that |f (x)− f (y)| ≤ L|x − y | for all x , y ∈ E .

• Any Lipschitz function is uniformly continuous.

Using notation of the definition, let δ(ε) = ε/L, ε > 0.
Then |x − y | < δ(ε) implies

|f (x)− f (y )| ≤ L|x − y | < Lδ(ε) = ε

for all x , y ∈ E .



• The function f (x) =
√
x is uniformly

continuous on [0,∞) but not Lipschitz.

For any n ∈ N, |f (1/n)− f (0)| =
√

1/n =
√
n |1/n − 0|.

It follows that f is not Lipschitz.

Given ε > 0, let δ = ε2. Suppose |x − y | < δ, where
x , y ≥ 0. To estimate |f (x)− f (y )|, we consider two cases.

In the case x , y ∈ [0, δ), we use the fact that f is strictly

increasing. Then |f (x)− f (y )| < f (δ)− f (0) =
√
δ = ε.

Otherwise, when x /∈ [0, δ) or y /∈ [0, δ), we have
max(x , y ) ≥ δ. Then

|√x −√
y | =

∣

∣

∣

∣

x − y√
x +

√
y

∣

∣

∣

∣

≤ |x − y |
√

max(x , y )
<

δ√
δ
=

√
δ = ε.

Thus f is uniformly continuous.



• The function f (x) = x2 is not uniformly
continuous on R.

Let ε = 2 and choose an arbitrary δ > 0. Let nδ be a natural
number such that 1/nδ < δ. Further, let xδ = nδ + 1/nδ and
yδ = nδ. Then |xδ − yδ| = 1/nδ < δ while

f (xδ)− f (yδ) = (nδ + 1/nδ)
2 − n2δ = 2 + 1/n2δ > ε.

We conclude that f is not uniformly continuous.

• The function f (x) = x2 is Lipschitz (and hence
uniformly continuous) on any bounded interval

[a, b].

For any x , y ∈ [a, b] we obtain

|x2 − y 2| = |(x + y )(x − y )| = |x + y | |x − y |
≤ (|x |+ |y |) |x − y | ≤ 2max(|a|, |b|) |x − y |.



Theorem Any function continuous on a closed bounded
interval [a, b] is also uniformly continuous on [a, b].

Proof: Assume that a function f : [a, b] → R is not
uniformly continuous on [a, b]. We have to show that f is not
continuous on [a, b]. By assumption, there exists ε > 0 such
that for any δ > 0 we can find two points x , y ∈ [a, b]
satisfying |x − y | < δ and |f (x)− f (y )| ≥ ε. In particular,
for any n ∈ N there exist points xn, yn ∈ [a, b] such that
|xn − yn| < 1/n while |f (xn)− f (yn)| ≥ ε.

By construction, {xn} is a bounded sequence. According to
the Bolzano-Weierstrass theorem, there is a subsequence {xnk}
converging to a limit c. Moreover, c belongs to [a, b] as
{xn} ⊂ [a, b]. Since xn − 1/n < yn < xn + 1/n for all
n ∈ N, the subsequence {ynk} also converges to c. However
the inequalities |f (xnk )− f (ynk )| ≥ ε imply that at least one
of the sequences {f (xnk )} and {f (ynk )} is not converging to
f (c). It follows that the function f is not continuous at c.



Theorem Suppose that a function f : E → R is
uniformly continuous on E . Then it maps Cauchy

sequences to Cauchy sequences, that is, for any
Cauchy sequence {xn} ⊂ E the sequence {f (xn)} is
also Cauchy.

Proof: Let {xn} ⊂ E be a Cauchy sequence. Since the
function f is uniformly continuous on E , for every ε > 0 there
exists δ = δ(ε) such that |x − y | < δ and x , y ∈ E imply
|f (x)− f (y )| < ε. Since {xn} is a Cauchy sequence, there
exists N = N(δ) ∈ N such that |xn − xm| < δ for all
n,m ≥ N. Then |f (xn)− f (xm)| < ε for all n,m ≥ N.

We conclude that {f (xn)} is a Cauchy sequence.



Dense subsets

Definition. Given a set E ⊂ R and its subset E0 ⊂ E , we say
that E0 is dense in E if for any point x ∈ E and any ε > 0
the interval (x − ε, x + ε) contains an element of E0.

Examples. • An open bounded interval (a, b) is dense in the
closed interval [a, b].
• The set Q of rational numbers is dense in R.

Theorem A subset E0 of a set E ⊂ R is dense in E if and
only if for any c ∈ E there exists a sequence {xn} ⊂ E0

converging to c.

Proof: Suppose that for any point c ∈ E there is a sequence
{xn} ⊂ E0 converging to c. Then any ε-neighborhood
(c − ε, c + ε) of c contains an element of that sequence.
Conversely, suppose that E0 is dense in E . Then, given
c ∈ E , for any n ∈ N there is a point xn ∈ (c− 1

n
, c+ 1

n
) ∩ E0.

Clearly, xn → c as n → ∞.



Continuous extension

Theorem Suppose that a subset E0 of a set

E ⊂ R is dense in E . Then any uniformly
continuous function f : E0 → R can be extended to

a continuous function on E . Moreover, the
extension is unique and uniformly continuous.

Proof: First let us show that a continuous extension of the
function f to the set E is unique (assuming it exists).

Suppose g , h : E → R are two continuous extensions of f .
Since the set E0 is dense in E , for any c ∈ E there is a
sequence {xn} ⊂ E0 converging to c. Since g and h are
continuous at c, we get g(xn) → g(c) and h(xn) → h(c) as
n → ∞. However g(xn) = h(xn) = f (xn) for all n ∈ N.
Hence g(c) = h(c).



Proof (continued): Given c ∈ E , let {xn} be a sequence of
elements of E0 converging to c. The sequence {xn} is
Cauchy. Since f is uniformly continuous, it follows that the
sequence {f (xn)} is also Cauchy. Hence it converges to a
limit L. We claim that the limit L depends only on c and does
not depend on the choice of the sequence {xn}. Indeed, let
{x̃n} ⊂ E0 be another sequence converging to c. Then a
sequence x1, x̃1, x2, x̃2, . . . also converges to c. Consequently,
the sequence f (x1), f (x̃1), f (x2), f (x̃2), . . . is convergent.
The limit is L since the subsequence {f (xn)} converges to L.
Another subsequence is {f (x̃n)}, hence it converges to L as
well. Now we set F (c) = L, which defines a function
F : E → R.

The continuity of the function f implies that F (c) = f (c) for
c ∈ E0, i.e., F is an extension of f .



Proof (continued): It remains to show that the extension F is
uniformly continuous.

Given ε > 0, let ε0 = ε/2. Since f is uniformly continuous,
there is δ > 0 such that |x − y | < δ implies
|f (x)− f (y )| < ε0 for all x , y ∈ E0. For any c, d ∈ E we
can find sequences {xn} and {yn} of elements of E0 such that
xn → c and yn → d as n → ∞. By construction of F , we
have f (xn) → F (c) and f (yn) → F (d) as n → ∞.

If |c − d | < δ, then |xn − yn| < δ for all sufficiently large n.
Consequently, |f (xn)− f (yn)| < ε0 for all sufficiently large n,
which implies |F (c)− F (d)| ≤ ε0 < ε.

Thus F is uniformly continuous.



Exponential functions

Theorem For any a > 0 there exists a unique
function Fa : R → R satisfying the following

conditions:
(i) Fa(1) = a,

(ii) Fa(x + y) = Fa(x)Fa(y) for all x , y ∈ R,
(iii) Fa is continuous at 0.

Remark. The function is denoted Fa(x) = ax and
called the exponential function with base a.



Sketch of the proof (existence)

Let a0 = 1, a1 = a, and an+1 = ana for all n ∈ N.
Further, let a−n = 1/an for all n ∈ N.

Lemma 1 am+n = aman and amn = (am)n for all m, n ∈ Z.

Lemma 2 If m1,m2 ∈ Z and n1, n2 ∈ N satisfy
m1/n1 = m2/n2, then n1

√
am1 = n2

√
am2 .

For any r ∈ Q let ar = n
√
am, where m ∈ Z and n ∈ N are

chosen so that r = m/n.

Lemma 3 ar+s = aras and ars = (ar )s for all r , s ∈ Q.

Lemma 4 The function f (r) = ar , r ∈ Q, is monotone.

Lemma 5 a1/n → 1 as n → ∞.

Lemma 6 The function f (r) = ar , r ∈ Q, is uniformly
continuous on [b1, b2] ∩Q for any bounded interval [b1, b2].


