MATH 409
 Advanced Calculus I

Lecture 12:
 Uniform continuity. Exponential functions.

Uniform continuity

Definition. A function $f: E \rightarrow \mathbb{R}$ defined on a set $E \subset \mathbb{R}$ is called uniformly continuous on E if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-y|<\delta$ and $x, y \in E$ imply $|f(x)-f(y)|<\varepsilon$.

Recall that the function f is continuous at a point $y \in E$ if for every $\varepsilon>0$ there exists $\delta=\delta(y, \varepsilon)>0$ such that $|x-y|<\delta$ and $x \in E$ imply $|f(x)-f(y)|<\varepsilon$.

Therefore the uniform continuity of f is a stronger property than the continuity of f on E.

Examples

- Constant function $f(x)=a$ is uniformly continuous on \mathbb{R}. Indeed, $|f(x)-f(y)|=0<\varepsilon$ for any $\varepsilon>0$ and $x, y \in \mathbb{R}$.
- Identity function $f(x)=x$ is uniformly continuous on \mathbb{R}.

Since $f(x)-f(y)=x-y$, we have $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\varepsilon$.

- The sine function $f(x)=\sin x$ is uniformly continuous on \mathbb{R}.

It was shown in the previous lecture that $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$. Therefore $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\varepsilon$.

Lipschitz functions

Definition. A function $f: E \rightarrow \mathbb{R}$ is called a Lipschitz function if there exists a constant $L>0$ such that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in E$.

- Any Lipschitz function is uniformly continuous.

Using notation of the definition, let $\delta(\varepsilon)=\varepsilon / L, \varepsilon>0$. Then $|x-y|<\delta(\varepsilon)$ implies

$$
|f(x)-f(y)| \leq L|x-y|<L \delta(\varepsilon)=\varepsilon
$$

for all $x, y \in E$.

- The function $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$ but not Lipschitz.

For any $n \in \mathbb{N},|f(1 / n)-f(0)|=\sqrt{1 / n}=\sqrt{n}|1 / n-0|$. It follows that f is not Lipschitz.
Given $\varepsilon>0$, let $\delta=\varepsilon^{2}$. Suppose $|x-y|<\delta$, where $x, y \geq 0$. To estimate $|f(x)-f(y)|$, we consider two cases. In the case $x, y \in[0, \delta)$, we use the fact that f is strictly increasing. Then $|f(x)-f(y)|<f(\delta)-f(0)=\sqrt{\delta}=\varepsilon$.
Otherwise, when $x \notin[0, \delta)$ or $y \notin[0, \delta)$, we have $\max (x, y) \geq \delta$. Then

$$
|\sqrt{x}-\sqrt{y}|=\left|\frac{x-y}{\sqrt{x}+\sqrt{y}}\right| \leq \frac{|x-y|}{\sqrt{\max (x, y)}}<\frac{\delta}{\sqrt{\delta}}=\sqrt{\delta}=\varepsilon .
$$

Thus f is uniformly continuous.

- The function $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.

Let $\varepsilon=2$ and choose an arbitrary $\delta>0$. Let n_{δ} be a natural number such that $1 / n_{\delta}<\delta$. Further, let $x_{\delta}=n_{\delta}+1 / n_{\delta}$ and $y_{\delta}=n_{\delta}$. Then $\left|x_{\delta}-y_{\delta}\right|=1 / n_{\delta}<\delta$ while

$$
f\left(x_{\delta}\right)-f\left(y_{\delta}\right)=\left(n_{\delta}+1 / n_{\delta}\right)^{2}-n_{\delta}^{2}=2+1 / n_{\delta}^{2}>\varepsilon .
$$

We conclude that f is not uniformly continuous.

- The function $f(x)=x^{2}$ is Lipschitz (and hence uniformly continuous) on any bounded interval [$a, b]$.
For any $x, y \in[a, b]$ we obtain

$$
\begin{aligned}
\left|x^{2}-y^{2}\right| & =|(x+y)(x-y)|=|x+y||x-y| \\
& \leq(|x|+|y|)|x-y| \leq 2 \max (|a|,|b|)|x-y| .
\end{aligned}
$$

Theorem Any function continuous on a closed bounded interval $[a, b]$ is also uniformly continuous on $[a, b]$.

Proof: Assume that a function $f:[a, b] \rightarrow \mathbb{R}$ is not uniformly continuous on $[a, b]$. We have to show that f is not continuous on $[a, b]$. By assumption, there exists $\varepsilon>0$ such that for any $\delta>0$ we can find two points $x, y \in[a, b]$ satisfying $|x-y|<\delta$ and $|f(x)-f(y)| \geq \varepsilon$. In particular, for any $n \in \mathbb{N}$ there exist points $x_{n}, y_{n} \in[a, b]$ such that $\left|x_{n}-y_{n}\right|<1 / n$ while $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$.
By construction, $\left\{x_{n}\right\}$ is a bounded sequence. According to the Bolzano-Weierstrass theorem, there is a subsequence $\left\{x_{n_{k}}\right\}$ converging to a limit c. Moreover, c belongs to $[a, b]$ as $\left\{x_{n}\right\} \subset[a, b]$. Since $x_{n}-1 / n<y_{n}<x_{n}+1 / n$ for all $n \in \mathbb{N}$, the subsequence $\left\{y_{n_{k}}\right\}$ also converges to c. However the inequalities $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \varepsilon$ imply that at least one of the sequences $\left\{f\left(x_{n_{k}}\right)\right\}$ and $\left\{f\left(y_{n_{k}}\right)\right\}$ is not converging to $f(c)$. It follows that the function f is not continuous at c.

Theorem Suppose that a function $f: E \rightarrow \mathbb{R}$ is uniformly continuous on E. Then it maps Cauchy sequences to Cauchy sequences, that is, for any Cauchy sequence $\left\{x_{n}\right\} \subset E$ the sequence $\left\{f\left(x_{n}\right)\right\}$ is also Cauchy.

Proof: Let $\left\{x_{n}\right\} \subset E$ be a Cauchy sequence. Since the function f is uniformly continuous on E, for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)$ such that $|x-y|<\delta$ and $x, y \in E$ imply $|f(x)-f(y)|<\varepsilon$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence, there exists $N=N(\delta) \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\delta$ for all $n, m \geq N$. Then $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon$ for all $n, m \geq N$.
We conclude that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence.

Dense subsets

Definition. Given a set $E \subset \mathbb{R}$ and its subset $E_{0} \subset E$, we say that E_{0} is dense in E if for any point $x \in E$ and any $\varepsilon>0$ the interval $(x-\varepsilon, x+\varepsilon)$ contains an element of E_{0}.
Examples. - An open bounded interval (a, b) is dense in the closed interval $[a, b]$.

- The set \mathbb{Q} of rational numbers is dense in \mathbb{R}.

Theorem A subset E_{0} of a set $E \subset \mathbb{R}$ is dense in E if and only if for any $c \in E$ there exists a sequence $\left\{x_{n}\right\} \subset E_{0}$ converging to c.

Proof: Suppose that for any point $c \in E$ there is a sequence $\left\{x_{n}\right\} \subset E_{0}$ converging to c. Then any ε-neighborhood $(c-\varepsilon, c+\varepsilon)$ of c contains an element of that sequence. Conversely, suppose that E_{0} is dense in E. Then, given $c \in E$, for any $n \in \mathbb{N}$ there is a point $x_{n} \in\left(c-\frac{1}{n}, c+\frac{1}{n}\right) \cap E_{0}$. Clearly, $x_{n} \rightarrow c$ as $n \rightarrow \infty$.

Continuous extension

Theorem Suppose that a subset E_{0} of a set $E \subset \mathbb{R}$ is dense in E. Then any uniformly continuous function $f: E_{0} \rightarrow \mathbb{R}$ can be extended to a continuous function on E. Moreover, the extension is unique and uniformly continuous.

Proof: First let us show that a continuous extension of the function f to the set E is unique (assuming it exists).
Suppose $g, h: E \rightarrow \mathbb{R}$ are two continuous extensions of f. Since the set E_{0} is dense in E, for any $c \in E$ there is a sequence $\left\{x_{n}\right\} \subset E_{0}$ converging to c. Since g and h are continuous at c, we get $g\left(x_{n}\right) \rightarrow g(c)$ and $h\left(x_{n}\right) \rightarrow h(c)$ as $n \rightarrow \infty$. However $g\left(x_{n}\right)=h\left(x_{n}\right)=f\left(x_{n}\right)$ for all $n \in \mathbb{N}$. Hence $g(c)=h(c)$.

Proof (continued): Given $c \in E$, let $\left\{x_{n}\right\}$ be a sequence of elements of E_{0} converging to c. The sequence $\left\{x_{n}\right\}$ is Cauchy. Since f is uniformly continuous, it follows that the sequence $\left\{f\left(x_{n}\right)\right\}$ is also Cauchy. Hence it converges to a limit L. We claim that the limit L depends only on c and does not depend on the choice of the sequence $\left\{x_{n}\right\}$. Indeed, let $\left\{\tilde{x}_{n}\right\} \subset E_{0}$ be another sequence converging to c. Then a sequence $x_{1}, \tilde{x}_{1}, x_{2}, \tilde{x}_{2}, \ldots$ also converges to c. Consequently, the sequence $f\left(x_{1}\right), f\left(\tilde{x}_{1}\right), f\left(x_{2}\right), f\left(\tilde{x}_{2}\right), \ldots$ is convergent. The limit is L since the subsequence $\left\{f\left(x_{n}\right)\right\}$ converges to L. Another subsequence is $\left\{f\left(\tilde{x}_{n}\right)\right\}$, hence it converges to L as well. Now we set $F(c)=L$, which defines a function $F: E \rightarrow \mathbb{R}$.
The continuity of the function f implies that $F(c)=f(c)$ for $c \in E_{0}$, i.e., F is an extension of f.

Proof (continued): It remains to show that the extension F is uniformly continuous.
Given $\varepsilon>0$, let $\varepsilon_{0}=\varepsilon / 2$. Since f is uniformly continuous, there is $\delta>0$ such that $|x-y|<\delta$ implies
$|f(x)-f(y)|<\varepsilon_{0}$ for all $x, y \in E_{0}$. For any $c, d \in E$ we can find sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ of elements of E_{0} such that $x_{n} \rightarrow c$ and $y_{n} \rightarrow d$ as $n \rightarrow \infty$. By construction of F, we have $f\left(x_{n}\right) \rightarrow F(c)$ and $f\left(y_{n}\right) \rightarrow F(d)$ as $n \rightarrow \infty$.
If $|c-d|<\delta$, then $\left|x_{n}-y_{n}\right|<\delta$ for all sufficiently large n. Consequently, $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right|<\varepsilon_{0}$ for all sufficiently large n, which implies $|F(c)-F(d)| \leq \varepsilon_{0}<\varepsilon$.
Thus F is uniformly continuous.

Exponential functions

Theorem For any $a>0$ there exists a unique function $F_{a}: \mathbb{R} \rightarrow \mathbb{R}$ satisfying the following conditions:
(i) $F_{a}(1)=a$,
(ii) $F_{a}(x+y)=F_{a}(x) F_{a}(y)$ for all $x, y \in \mathbb{R}$,
(iii) F_{a} is continuous at 0 .

Remark. The function is denoted $F_{a}(x)=a^{x}$ and called the exponential function with base a.

Sketch of the proof (existence)

Let $a^{0}=1, a^{1}=a$, and $a^{n+1}=a^{n} a$ for all $n \in \mathbb{N}$.
Further, let $a^{-n}=1 / a^{n}$ for all $n \in \mathbb{N}$.
Lemma $1 a^{m+n}=a^{m} a^{n}$ and $a^{m n}=\left(a^{m}\right)^{n}$ for all $m, n \in \mathbb{Z}$.
Lemma 2 If $m_{1}, m_{2} \in \mathbb{Z}$ and $n_{1}, n_{2} \in \mathbb{N}$ satisfy $m_{1} / n_{1}=m_{2} / n_{2}$, then $\sqrt[n_{1}]{a^{m_{1}}}=\sqrt[n_{2}]{a^{m_{2}}}$.

For any $r \in \mathbb{Q}$ let $a^{r}=\sqrt[n]{a^{m}}$, where $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ are chosen so that $r=m / n$.

Lemma $3 a^{r+s}=a^{r} a^{s}$ and $a^{r s}=\left(a^{r}\right)^{s}$ for all $r, s \in \mathbb{Q}$.
Lemma 4 The function $f(r)=a^{r}, r \in \mathbb{Q}$, is monotone.
Lemma $5 a^{1 / n} \rightarrow 1$ as $n \rightarrow \infty$.
Lemma 6 The function $f(r)=a^{r}, r \in \mathbb{Q}$, is uniformly continuous on $\left[b_{1}, b_{2}\right] \cap \mathbb{Q}$ for any bounded interval $\left[b_{1}, b_{2}\right]$.

