MATH 409 Advanced Calculus I Lecture 12: Uniform continuity. Exponential functions.

Uniform continuity

Definition. A function $f : E \to \mathbb{R}$ defined on a set $E \subset \mathbb{R}$ is called **uniformly continuous** on E if for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon) > 0$ such that $|x - y| < \delta$ and $x, y \in E$ imply $|f(x) - f(y)| < \varepsilon$.

Recall that the function f is continuous at a point $y \in E$ if for every $\varepsilon > 0$ there exists $\delta = \delta(y, \varepsilon) > 0$ such that $|x - y| < \delta$ and $x \in E$ imply $|f(x) - f(y)| < \varepsilon$.

Therefore the uniform continuity of f is a stronger property than the continuity of f on E.

Examples

• Constant function f(x) = a is uniformly continuous on \mathbb{R} .

Indeed, $|f(x) - f(y)| = 0 < \varepsilon$ for any $\varepsilon > 0$ and $x, y \in \mathbb{R}$.

• Identity function f(x) = x is uniformly continuous on \mathbb{R} .

Since f(x) - f(y) = x - y, we have $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \varepsilon$.

• The sine function $f(x) = \sin x$ is uniformly continuous on \mathbb{R} .

It was shown in the previous lecture that $|\sin x - \sin y| \le |x - y|$ for all $x, y \in \mathbb{R}$. Therefore $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \varepsilon$.

Lipschitz functions

Definition. A function $f : E \to \mathbb{R}$ is called a **Lipschitz function** if there exists a constant L > 0 such that $|f(x) - f(y)| \le L|x - y|$ for all $x, y \in E$.

• Any Lipschitz function is uniformly continuous. Using notation of the definition, let $\delta(\varepsilon) = \varepsilon/L$, $\varepsilon > 0$. Then $|x - y| < \delta(\varepsilon)$ implies $|f(x) - f(y)| \le L|x - y| < L\delta(\varepsilon) = \varepsilon$ for all $x, y \in E$.

• The function $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$ but not Lipschitz.

For any $n \in \mathbb{N}$, $|f(1/n) - f(0)| = \sqrt{1/n} = \sqrt{n} |1/n - 0|$. It follows that f is not Lipschitz.

Given $\varepsilon > 0$, let $\delta = \varepsilon^2$. Suppose $|x - y| < \delta$, where $x, y \ge 0$. To estimate |f(x) - f(y)|, we consider two cases. In the case $x, y \in [0, \delta)$, we use the fact that f is strictly increasing. Then $|f(x) - f(y)| < f(\delta) - f(0) = \sqrt{\delta} = \varepsilon$. Otherwise, when $x \notin [0, \delta)$ or $y \notin [0, \delta)$, we have $\max(x, y) \ge \delta$. Then

$$\left|\sqrt{x}-\sqrt{y}\right| = \left|\frac{x-y}{\sqrt{x}+\sqrt{y}}\right| \le \frac{|x-y|}{\sqrt{\max(x,y)}} < \frac{\delta}{\sqrt{\delta}} = \sqrt{\delta} = \varepsilon.$$

Thus *f* is uniformly continuous.

• The function $f(x) = x^2$ is not uniformly continuous on \mathbb{R} .

Let $\varepsilon = 2$ and choose an arbitrary $\delta > 0$. Let n_{δ} be a natural number such that $1/n_{\delta} < \delta$. Further, let $x_{\delta} = n_{\delta} + 1/n_{\delta}$ and $y_{\delta} = n_{\delta}$. Then $|x_{\delta} - y_{\delta}| = 1/n_{\delta} < \delta$ while $f(x_{\delta}) - f(y_{\delta}) = (n_{\delta} + 1/n_{\delta})^2 - n_{\delta}^2 = 2 + 1/n_{\delta}^2 > \varepsilon$.

We conclude that f is not uniformly continuous.

• The function $f(x) = x^2$ is Lipschitz (and hence uniformly continuous) on any bounded interval [a, b].

For any $x, y \in [a, b]$ we obtain $|x^2 - y^2| = |(x + y)(x - y)| = |x + y| |x - y|$ $\leq (|x| + |y|) |x - y| \leq 2 \max(|a|, |b|) |x - y|.$ **Theorem** Any function continuous on a closed bounded interval [a, b] is also uniformly continuous on [a, b].

Proof: Assume that a function $f : [a, b] \to \mathbb{R}$ is not uniformly continuous on [a, b]. We have to show that f is not continuous on [a, b]. By assumption, there exists $\varepsilon > 0$ such that for any $\delta > 0$ we can find two points $x, y \in [a, b]$ satisfying $|x - y| < \delta$ and $|f(x) - f(y)| \ge \varepsilon$. In particular, for any $n \in \mathbb{N}$ there exist points $x_n, y_n \in [a, b]$ such that $|x_n - y_n| < 1/n$ while $|f(x_n) - f(y_n)| \ge \varepsilon$.

By construction, $\{x_n\}$ is a bounded sequence. According to the Bolzano-Weierstrass theorem, there is a subsequence $\{x_{n_k}\}$ converging to a limit *c*. Moreover, *c* belongs to [a, b] as $\{x_n\} \subset [a, b]$. Since $x_n - 1/n < y_n < x_n + 1/n$ for all $n \in \mathbb{N}$, the subsequence $\{y_{n_k}\}$ also converges to *c*. However the inequalities $|f(x_{n_k}) - f(y_{n_k})| \ge \varepsilon$ imply that at least one of the sequences $\{f(x_{n_k})\}$ and $\{f(y_{n_k})\}$ is not converging to f(c). It follows that the function *f* is not continuous at *c*. **Theorem** Suppose that a function $f : E \to \mathbb{R}$ is uniformly continuous on E. Then it maps Cauchy sequences to Cauchy sequences, that is, for any Cauchy sequence $\{x_n\} \subset E$ the sequence $\{f(x_n)\}$ is also Cauchy.

Proof: Let $\{x_n\} \subset E$ be a Cauchy sequence. Since the function f is uniformly continuous on E, for every $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon)$ such that $|x - y| < \delta$ and $x, y \in E$ imply $|f(x) - f(y)| < \varepsilon$. Since $\{x_n\}$ is a Cauchy sequence, there exists $N = N(\delta) \in \mathbb{N}$ such that $|x_n - x_m| < \delta$ for all $n, m \ge N$. Then $|f(x_n) - f(x_m)| < \varepsilon$ for all $n, m \ge N$. We conclude that $\{f(x_n)\}$ is a Cauchy sequence.

Dense subsets

Definition. Given a set $E \subset \mathbb{R}$ and its subset $E_0 \subset E$, we say that E_0 is **dense in** E if for any point $x \in E$ and any $\varepsilon > 0$ the interval $(x - \varepsilon, x + \varepsilon)$ contains an element of E_0 .

Examples. • An open bounded interval (a, b) is dense in the closed interval [a, b].

• The set \mathbb{Q} of rational numbers is dense in \mathbb{R} .

Theorem A subset E_0 of a set $E \subset \mathbb{R}$ is dense in E if and only if for any $c \in E$ there exists a sequence $\{x_n\} \subset E_0$ converging to c.

Proof: Suppose that for any point $c \in E$ there is a sequence $\{x_n\} \subset E_0$ converging to c. Then any ε -neighborhood $(c - \varepsilon, c + \varepsilon)$ of c contains an element of that sequence. Conversely, suppose that E_0 is dense in E. Then, given $c \in E$, for any $n \in \mathbb{N}$ there is a point $x_n \in (c - \frac{1}{n}, c + \frac{1}{n}) \cap E_0$. Clearly, $x_n \to c$ as $n \to \infty$.

Continuous extension

Theorem Suppose that a subset E_0 of a set $E \subset \mathbb{R}$ is dense in E. Then any uniformly continuous function $f : E_0 \to \mathbb{R}$ can be extended to a continuous function on E. Moreover, the extension is unique and uniformly continuous.

Proof: First let us show that a continuous extension of the function f to the set E is unique (assuming it exists). Suppose $g, h : E \to \mathbb{R}$ are two continuous extensions of f. Since the set E_0 is dense in E, for any $c \in E$ there is a sequence $\{x_n\} \subset E_0$ converging to c. Since g and h are continuous at c, we get $g(x_n) \to g(c)$ and $h(x_n) \to h(c)$ as $n \to \infty$. However $g(x_n) = h(x_n) = f(x_n)$ for all $n \in \mathbb{N}$. Hence g(c) = h(c).

Proof (continued): Given $c \in E$, let $\{x_n\}$ be a sequence of elements of E_0 converging to c. The sequence $\{x_n\}$ is Cauchy. Since f is uniformly continuous, it follows that the sequence $\{f(x_n)\}$ is also Cauchy. Hence it converges to a limit L. We claim that the limit L depends only on c and does not depend on the choice of the sequence $\{x_n\}$. Indeed, let $\{\tilde{x}_n\} \subset E_0$ be another sequence converging to c. Then a sequence $x_1, \tilde{x}_1, x_2, \tilde{x}_2, \ldots$ also converges to *c*. Consequently, the sequence $f(x_1), f(\tilde{x}_1), f(x_2), f(\tilde{x}_2), \ldots$ is convergent. The limit is L since the subsequence $\{f(x_n)\}$ converges to L. Another subsequence is $\{f(\tilde{x}_n)\}$, hence it converges to L as well. Now we set F(c) = L, which defines a function $F: E \to \mathbb{R}$.

The continuity of the function f implies that F(c) = f(c) for $c \in E_0$, i.e., F is an extension of f.

Proof (continued): It remains to show that the extension F is uniformly continuous.

Given $\varepsilon > 0$, let $\varepsilon_0 = \varepsilon/2$. Since f is uniformly continuous, there is $\delta > 0$ such that $|x - y| < \delta$ implies $|f(x) - f(y)| < \varepsilon_0$ for all $x, y \in E_0$. For any $c, d \in E$ we can find sequences $\{x_n\}$ and $\{y_n\}$ of elements of E_0 such that $x_n \to c$ and $y_n \to d$ as $n \to \infty$. By construction of F, we have $f(x_n) \to F(c)$ and $f(y_n) \to F(d)$ as $n \to \infty$. If $|c - d| < \delta$, then $|x_n - y_n| < \delta$ for all sufficiently large n. Consequently, $|f(x_n) - f(y_n)| < \varepsilon_0$ for all sufficiently large n, which implies $|F(c) - F(d)| \le \varepsilon_0 < \varepsilon$.

Thus F is uniformly continuous.

Exponential functions

Theorem For any a > 0 there exists a unique function $F_a : \mathbb{R} \to \mathbb{R}$ satisfying the following conditions:

(i)
$$F_a(1) = a$$
,
(ii) $F_a(x + y) = F_a(x)F_a(y)$ for all $x, y \in \mathbb{R}$,
(iii) F_a is continuous at 0.

Remark. The function is denoted $F_a(x) = a^x$ and called the **exponential function with base** *a*.

Sketch of the proof (existence)

Let $a^0 = 1$, $a^1 = a$, and $a^{n+1} = a^n a$ for all $n \in \mathbb{N}$. Further, let $a^{-n} = 1/a^n$ for all $n \in \mathbb{N}$.

Lemma 1 $a^{m+n} = a^m a^n$ and $a^{mn} = (a^m)^n$ for all $m, n \in \mathbb{Z}$.

Lemma 2 If $m_1, m_2 \in \mathbb{Z}$ and $n_1, n_2 \in \mathbb{N}$ satisfy $m_1/n_1 = m_2/n_2$, then $\sqrt[n_1]{a^{m_1}} = \sqrt[n_2]{a^{m_2}}$.

For any $r \in \mathbb{Q}$ let $a^r = \sqrt[n]{a^m}$, where $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ are chosen so that r = m/n.

Lemma 3 $a^{r+s} = a^r a^s$ and $a^{rs} = (a^r)^s$ for all $r, s \in \mathbb{Q}$.

Lemma 4 The function $f(r) = a^r$, $r \in \mathbb{Q}$, is monotone.

Lemma 5 $a^{1/n} \rightarrow 1$ as $n \rightarrow \infty$.

Lemma 6 The function $f(r) = a^r$, $r \in \mathbb{Q}$, is uniformly continuous on $[b_1, b_2] \cap \mathbb{Q}$ for any bounded interval $[b_1, b_2]$.