MATH 409 Advanced Calculus I Lecture 13: Review for Test 1.

Topics for Test 1

Part I: Axiomatic model of the real numbers

- Axioms of an ordered field
- Completeness axiom
- Archimedean principle
- Principle of mathematical induction
- Binomial formula
- Countable and uncountable sets

Wade's book: 1.1–1.6, Appendix A

Topics for Test 1

Part II: Limits and continuity

- Limits of sequences
- Limit theorems for sequences
- Monotone sequences
- Bolzano-Weierstrass theorem
- Cauchy sequences
- Limits of functions
- Limit theorems for functions
- Continuity of functions
- Extreme value and intermediate value theorems
- Uniform continuity

Wade's book: 2.1–2.5, 3.1–3.4

Axioms of real numbers

Definition. The set \mathbb{R} of real numbers is a set satisfying the following postulates:

Postulate 1. \mathbb{R} is a field.

Postulate 2. There is a strict linear order < on \mathbb{R} that makes it into an ordered field.

Postulate 3 (Completeness Axiom). If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then *E* has a supremum.

Theorems to know

Theorem (Archimedean Principle) For any real number $\varepsilon > 0$ there exists a natural number *n* such that $n\varepsilon > 1$.

Theorem (Principle of mathematical induction) Let P(n) be an assertion depending on a natural variable n. Suppose that

• *P*(1) holds,

• whenever P(k) holds, so does P(k + 1). Then P(n) holds for all $n \in \mathbb{N}$.

Theorem If A_1, A_2, \ldots are finite or countable sets, then the union $A_1 \cup A_2 \cup \ldots$ is also finite or countable. As a consequence, the sets \mathbb{Z} , \mathbb{Q} , and $\mathbb{N} \times \mathbb{N}$ are countable.

Theorem The set \mathbb{R} is uncountable.

Limit theorems for sequences

Theorem If $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$ and $x_n \le w_n \le y_n$ for all sufficiently large *n*, then $\lim_{n\to\infty} w_n = a$.

Theorem If $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} y_n = b$, and $x_n \le y_n$ for all sufficiently large n, then $a \le b$.

Theorem If $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} y_n = b$, then $\lim_{n\to\infty} (x_n + y_n) = a + b$, $\lim_{n\to\infty} (x_n - y_n) = a - b$, and $\lim_{n\to\infty} x_n y_n = ab$. If, additionally, $b \neq 0$ and $y_n \neq 0$ for all $n \in \mathbb{N}$, then $\lim_{n\to\infty} x_n/y_n = a/b$. **Theorem** Any monotone sequence converges to a limit if bounded, and diverges to infinity otherwise.

Theorem (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.

Theorem Any Cauchy sequence is convergent.

Theorem A function $f : E \to \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\{x_n\}$ of elements of E, $x_n \to c$ as $n \to \infty$ implies $f(x_n) \to f(c)$ as $n \to \infty$.

Theorem Suppose that functions $f, g : E \to \mathbb{R}$ are both continuous at a point $c \in E$. Then the functions f + g, f - g, and fg are also continuous at c. If, additionally, $g(c) \neq 0$, then the function f/g is continuous at c as well.

Extreme Value Theorem If I = [a, b] is a closed, bounded interval of the real line, then any continuous function $f : I \to \mathbb{R}$ is bounded and attains its extreme values (maximum and minimum) on I.

Intermediate Value Theorem If a function $f : [a, b] \to \mathbb{R}$ is continuous then any number y_0 that lies between f(a) and f(b) is a value of f, i.e., $y_0 = f(x_0)$ for some $x_0 \in [a, b]$.

Theorem Any function continuous on a closed bounded interval [a, b] is also uniformly continuous on [a, b].

Sample problems for Test 1

Problem 1 (15 pts.) Prove that for any $n \in \mathbb{N}$, $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}$.

Problem 2 (30 pts.) Let $\{F_n\}$ be the sequence of Fibonacci numbers: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

(i) Show that the sequence $\{F_{2k}/F_{2k-1}\}_{k\in\mathbb{N}}$ is increasing while the sequence $\{F_{2k+1}/F_{2k}\}_{k\in\mathbb{N}}$ is decreasing.

(ii) Prove that
$$\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \frac{\sqrt{5+1}}{2}$$

Problem 3 (25 pts.) Prove the Extreme Value Theorem: if $f : [a, b] \to \mathbb{R}$ is a continuous function on a closed bounded interval [a, b], then f is bounded and attains its extreme values (maximum and minimum) on [a, b].

Sample problems for Test 1

Problem 4 (20 pts.) Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by f(-1) = f(0) = f(1) = 0and $f(x) = \frac{x-1}{x^2-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \setminus \{-1, 0, 1\}$.

(i) Determine all points at which the function f is continuous.

(ii) Is the function f uniformly continuous on the interval (0,1)? Is it uniformly continuous on the interval (1,2)? Explain.

Sample problems for Test 1

Bonus Problem 5 (15 pts.) Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

Problem 1. Prove that for any $n \in \mathbb{N}$,

$$1^3 + 2^3 + 3^3 + \cdots + n^3 = \frac{n^2(n+1)^2}{4}$$

Proof: The proof is by induction on *n*. First we consider the case n = 1. In this case the formula reduces to $1^3 = \frac{1^2 \cdot 2^2}{4}$, which is a true equality. Now assume that the formula holds for n = k, that is,

$$1^3 + 2^3 + \dots + k^3 = \frac{k^2(k+1)^2}{4}$$

Adding $(k+1)^3$ to both sides of this equality, we get

$$1^{3} + 2^{3} + \dots + k^{3} + (k+1)^{3} = \frac{k^{2}(k+1)^{2}}{4} + (k+1)^{3}$$

$$=(k+1)^2\left(rac{k^2}{4}+(k+1)
ight)=(k+1)^2rac{k^2+4k+4}{4}=rac{(k+1)^2(k+2)^2}{4},$$

which means that the formula holds for n = k + 1 as well. By induction, the formula holds for any natural number n. *Remark.* We have proved that $1^3 + 2^3 + 3^3 + \dots + n^3 = \frac{n^2(n+1)^2}{4}.$

Also, it is known that

$$1+2+3+\cdots+n=\frac{n(n+1)}{2}.$$

It follows that

 $1^3 + 2^3 + 3^3 + \dots + n^3 = (1 + 2 + 3 + \dots + n)^2$ for all $n \in \mathbb{N}$. **Problem 2.** Let $\{F_n\}$ be the sequence of Fibonacci numbers: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. (i) Show that the sequence $\{F_{2k}/F_{2k-1}\}_{k\in\mathbb{N}}$ is increasing while the sequence $\{F_{2k+1}/F_{2k}\}_{k\in\mathbb{N}}$ is decreasing.

Let
$$x_n = F_{n+1}/F_n$$
, $n \in \mathbb{N}$. Then
 $x_{n+1} = \frac{F_{n+2}}{F_{n+1}} = \frac{F_n + F_{n+1}}{F_{n+1}} = 1 + \frac{F_n}{F_{n+1}} = 1 + \frac{1}{x_n}$

for all $n \in \mathbb{N}$. In particular, $x_1 = 1$, $x_2 = 1 + 1/x_1 = 2$, $x_3 = 1 + 1/x_2 = 3/2$, $x_4 = 1 + 1/x_3 = 5/3$. Notice that $x_1 < x_3 < x_4 < x_2$.

The function f(x) = 1 + 1/x is strictly decreasing on the interval $I = (0, \infty)$ and maps it to itself. Therefore its second iteration $g = f \circ f$ is strictly increasing on I and $g(I) \subset I$. We have $x_{n+2} = f(x_{n+1}) = f(f(x_n)) = g(x_n)$ for all $n \in \mathbb{N}$. Now it follows by induction on k that

 $x_{2k-1} < x_{2k+1} < x_{2k+2} < x_{2k}$ for all $k \in \mathbb{N}$.

Problem 2. Let $\{F_n\}$ be the sequence of Fibonacci numbers: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. (ii) Prove that $\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{\sqrt{5}+1}{2}$.

We already know that the numbers $x_n = F_{n+1}/F_n$ satisfy inequalities

$$x_{2k-1} < x_{2k+1} < x_{2k+2} < x_{2k}$$

for all $k \in \mathbb{N}$. It follows that the sequence $\{x_{2k-1}\}$ is strictly increasing, the sequence $\{x_{2k}\}$ is strictly decreasing, and both sequences are bounded. Therefore these sequences are converging to some positive limits: $x_{2k-1} \rightarrow c_1$ and $x_{2k} \rightarrow c_2$ as $k \rightarrow \infty$. To prove that $\lim_{n \to \infty} F_{n+1}/F_n = (\sqrt{5}+1)/2$, it is enough to show that $c_1 = c_2 = (\sqrt{5}+1)/2$.

For any x > 0 we obtain

$$g(x) = f(f(x)) = f\left(1 + \frac{1}{x}\right) = 1 + \frac{1}{1 + \frac{1}{x}}$$
$$= 1 + \frac{1}{\frac{x+1}{x}} = 1 + \frac{x}{x+1} = \frac{2x+1}{x+1}.$$

It follows that $g(x_{2k-1}) \rightarrow g(c_1)$ and $g(x_{2k}) \rightarrow g(c_2)$ as $k \rightarrow \infty$. However $g(x_{2k-1}) = x_{2k+1}$ and $g(x_{2k}) = x_{2k+2}$, which implies that $g(c_1) = c_1$ and $g(c_2) = c_2$. Since

$$x-g(x) = \frac{x(x+1)}{x+1} - \frac{2x+1}{x+1} = \frac{x^2-x-1}{x+1}$$

 c_1 and c_2 are roots of the equation $x^2 - x - 1 = 0$. This equation has two roots, $(1 - \sqrt{5})/2$ and $(\sqrt{5} + 1)/2$. One of the roots is negative. Thus both c_1 and c_2 are equal to the other root, $(\sqrt{5} + 1)/2$.

Problem 3. Prove the Extreme Value Theorem: if $f : [a, b] \rightarrow \mathbb{R}$ is a continuous function on a closed bounded interval [a, b], then f is bounded and attains its extreme values (maximum and minimum) on [a, b].

Proof: First let us prove that the function f is bounded. Assume the contrary. Then for every $n \in \mathbb{N}$ there exists a point $x_n \in [a, b]$ such that $|f(x_n)| > n$. We obtain a sequence $\{x_n\}$ of elements of [a, b] such that the sequence $\{f(x_n)\}$ diverges to infinity. Since the sequence $\{x_n\}$ is bounded, it has a convergent subsequence $\{x_{n_{\mu}}\}$ due to the Bolzano-Weierstrass Theorem. Let c be the limit of $x_{n_{\mu}}$ as $k \to \infty$. Since $a \le x_{n_k} \le b$ for all k, the Comparison Theorem implies that $a \le c \le b$, i.e., $c \in [a, b]$. Then the function f is continuous at c. As a consequence, $f(x_{n_k}) \to f(c)$ as $k \to \infty$. However the sequence $\{f(x_{n_k})\}$ is a subsequence of $\{f(x_n)\}$ and hence diverges to infinity. This contradiction shows that the assumption was wrong: the function f is bounded.

Since the function f is bounded, the image f([a, b]) is a bounded subset of \mathbb{R} . Let $m = \inf f([a, b])$, $M = \sup f([a, b])$. For any $n \in \mathbb{N}$ the number $M - \frac{1}{n}$ is not an upper bound of the set f([a, b]) while $m + \frac{1}{n}$ is not a lower bound of f([a, b]). Hence we can find points $y_n, z_n \in [a, b]$ such that $f(y_n) > M - \frac{1}{n}$ and $f(z_n) < m + \frac{1}{n}$. At the same time, m < f(x) < M for all $x \in [a, b]$. It follows that $f(y_n) \to M$ and $f(z_n) \to m$ as $n \to \infty$. By the Bolzano-Weierstrass Theorem, the sequence $\{y_n\}$ has a subsequence $\{y_{n_k}\}$ converging to some c_1 . The sequence $\{z_n\}$ also has a subsequence $\{z_{m_k}\}$ converging to some c_2 . Moreover, $c_1, c_2 \in [a, b]$. The continuity of f implies that $f(y_{n_k}) \to f(c_1)$ and $f(z_{m_k}) \to f(c_2)$ as $k \to \infty$. Since $\{f(y_{n_k})\}$ is a subsequence of $\{f(y_n)\}$ and $\{f(z_{m_k})\}$ is a subsequence of $\{f(z_n)\}$, we conclude that $f(c_1) = M$ and $f(c_2) = m$. Thus the function f attains its maximum M on the interval [a, b] at the point c_1 and its minimum m at the point c_2 .

Problem 4. Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by f(-1) = f(0) = f(1) = 0 and $f(x) = \frac{x-1}{x^2-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \setminus \{-1, 0, 1\}$.

(i) Determine all points at which the function f is continuous.

The polynomial functions $g_1(x) = x - 1$ and $g_2(x) = x^2 - 1$ are continuous on the entire real line. Moreover, $g_2(x) = 0$ if and only if x = 1 or -1. Therefore the quotient $g(x) = g_1(x)/g_2(x)$ is well defined and continuous on $\mathbb{R} \setminus \{-1, 1\}$.

Further, the function $h_1(x) = 1/x$ is continuous on $\mathbb{R} \setminus \{0\}$. Since the function $h_2(x) = \sin x$ is continuous on \mathbb{R} , the composition function $h(x) = h_2(h_1(x))$ is continuous on $\mathbb{R} \setminus \{0\}$.

Clearly, f(x) = g(x)h(x) for all $x \in \mathbb{R} \setminus \{-1, 0, 1\}$. It follows that the function f is continuous on $\mathbb{R} \setminus \{-1, 0, 1\}$.

It remains to determine whether the function f is continuous at points -1, 0, and 1. Observe that g(x) = 1/(x+1) for all $x \in \mathbb{R} \setminus \{-1, 1\}$. Therefore $g(x) \to 1$ as $x \to 0$, $g(x) \rightarrow 1/2$ as $x \rightarrow 1$, and $g(x) \rightarrow \pm \infty$ as $x \rightarrow -1$. Since the function h is continuous at -1 and 1, we have $h(x) \rightarrow h(-1) = -\sin 1$ as $x \rightarrow -1$ and $h(x) \rightarrow h(1) = \sin 1$ as $x \rightarrow 1$. Note that $\sin 1 \neq 0$ since $0 < 1 < \pi/2$. It follows that $f(x) \to \pm \infty$ as $x \to -1$. In particular, f is discontinuous at -1. Further, $f(x) \rightarrow \frac{1}{2} \sin 1$ as $x \rightarrow 1$. Since f(1) = 0, the function f has a removable discontinuity at 1. Finally, the function f is not continuous at 0 since it has no limit at 0. To be precise, let $x_n = (\pi/2 + 2\pi n)^{-1}$ and $y_n = (-\pi/2 + 2\pi n)^{-1}$ for all $n \in \mathbb{N}$. Then $\{x_n\}$ and $\{y_n\}$ are two sequences of positive numbers converging to 0. We have $h(x_n) = 1$ and $h(y_n) = -1$ for all $n \in \mathbb{N}$. It follows that $f(x_n) \to 1$ and $f(y_n) \to -1$ as $n \to \infty$. Hence there is no limit of f(x) as $x \to 0+$.

(ii) Is the function f uniformly continuous on the interval (0,1)? Is it uniformly continuous on the interval (1,2)?

Any function uniformly continuous on the open interval (0,1) can be extended to a continuous function on [0,1]. As a consequence, such a function has a right-hand limit at 0. However we already know that the function f has no right-hand limit at 0. Therefore f is not uniformly continuous on (0,1).

The function f is continuous on (1, 2] and has a removable singularity at 1. Changing the value of f at 1 to the limit at 1, we obtain a function continuous on [1, 2]. It is known that every function continuous on the closed interval [1, 2] is also uniformly continuous on [1, 2]. Further, any function uniformly continuous on the set [1, 2] is also uniformly continuous on its subset (1, 2). Since the redefined function coincides with f on (1, 2), we conclude that f is uniformly continuous on (1, 2). **Bonus Problem 5.** Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

Proof: We have to prove that there is no bijective map of X onto $\mathcal{P}(X)$. Let us consider an arbitrary map $f: X \to \mathcal{P}(X)$. The image f(x) of an element $x \in X$ under this map is a subset of X. We define a set

$$E = \{x \in X \mid x \notin f(x)\}.$$

By definition of the set E, any element $x \in X$ belongs to E if and only if it does not belong to f(x). As a consequence, $E \neq f(x)$ for all $x \in X$. Hence the map f is not onto. In particular, it is not bijective.