MATH 409
 Advanced Calculus I

Lecture 14:
 The derivative.
 Differentiability theorems.

The derivative

Definition. A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. The limit is denoted $f^{\prime}(a)$ and called the derivative of f at a.
An equivalent condition is $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
Remark. The one-sided limits $\lim _{x \rightarrow a+} \frac{f(x)-f(a)}{x-a}$ and
$\lim _{x \rightarrow a-} \frac{f(x)-f(a)}{x-a}$ are called the right-hand and left-hand derivatives of f at a. One of them or both might exist even if f is not differentiable at a.

Examples

- Constant function: $f(x)=c, x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{c-c}{h}=0$ for all $x \in \mathbb{R}$ and $h \neq 0$.
Therefore $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0$.
That is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.
- Identity function: $f(x)=x, x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{(x+h)-x}{h}=1$ for all $x \in \mathbb{R}, h \neq 0$.
Therefore $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=1$.
That is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$.

Examples

- $f(x)=x^{2}, x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-x^{2}}{h}=\frac{2 x h+h^{2}}{h}=2 x+h$.
Therefore $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x$.
That is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=2 x$ for all $x \in \mathbb{R}$.

Examples

$$
\begin{aligned}
& \bullet f(x)=\frac{1}{x}, x \in(-\infty, 0) \cup(0, \infty) . \\
& \begin{aligned}
\frac{f(x+h)-f(x)}{h} & =\frac{1}{h} \cdot\left(\frac{1}{x+h}-\frac{1}{x}\right) \\
& =\frac{1}{h} \cdot \frac{x-(x+h)}{(x+h) x}=-\frac{1}{(x+h) x} .
\end{aligned} \\
& \text { Therefore } \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0}-\frac{1}{(x+h) x}=-\frac{1}{x^{2}} .
\end{aligned}
$$

That is, f is differentiable on $\mathbb{R} \backslash\{0\}$ and $f^{\prime}(x)=-1 / x^{2}$ for all $x \neq 0$.

Examples

$$
\begin{aligned}
& \bullet f(x)=\sqrt{x}, \quad x \in[0, \infty) \\
& \frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& \quad=\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}
\end{aligned}
$$

In the case $x>0$,

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
$$

In the case $x=0, \quad \lim _{h \rightarrow 0+} \frac{f(h)-f(0)}{h}=\lim _{h \rightarrow 0+} \frac{1}{\sqrt{h}}=+\infty$.
Hence f is differentiable on $(0, \infty)$ and $f^{\prime}(x)=1 /(2 \sqrt{x})$ for all $x>0$. It is not differentiable at 0 .

Examples

- $f(x)=\sin x, \quad x \in \mathbb{R}$.

Using the formula $\sin \alpha-\sin \beta=2 \sin \frac{\alpha-\beta}{2} \cos \frac{\alpha+\beta}{2}$, we obtain

$$
\frac{f(x+h)-f(x)}{h}=\frac{\sin (x+h)-\sin x}{h}=\frac{2}{h} \sin \frac{h}{2} \cos \frac{2 x+h}{2} .
$$

Therefore $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{2}{h} \sin \frac{h}{2} \cos \frac{2 x+h}{2}$
$=\lim _{h \rightarrow 0} \frac{\sin (h / 2)}{h / 2} \cdot \lim _{h \rightarrow 0} \cos (x+h / 2)=1 \cdot \cos x=\cos x$.
That is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=\cos x$ for all $x \in \mathbb{R}$.

Differentiability \Longrightarrow continuity

Theorem If a function f is differentiable at a point a, then it is continuous at a.

Proof:

$$
\begin{aligned}
& \lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a}\left(f(a)+\frac{f(x)-f(a)}{x-a}(x-a)\right) \\
& =\lim _{x \rightarrow a} f(a)+\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a) \\
& =f(a)+f^{\prime}(a) \cdot 0=f(a) .
\end{aligned}
$$

Remark. Similarly, if f has a right-hand derivative at a, then $\lim _{x \rightarrow a+} f(x)=f(a)$. If f has a left-hand derivative at a, then $\lim _{x \rightarrow a^{-}} f(x)=f(a)$.

Sum Rule and Homogeneous Rule

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the sum $f+g$ is also differentiable at a.
Moreover, $(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a)$.
Proof: $\quad \lim _{x \rightarrow a} \frac{(f+g)(x)-(f+g)(a)}{x-a}$

$$
=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}+\lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=f^{\prime}(a)+g^{\prime}(a) .
$$

Theorem If a function f is differentiable at a point $a \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r f$ is also differentiable at a. Moreover, $(r f)^{\prime}(a)=r f^{\prime}(a)$.
Proof: $\lim _{x \rightarrow a} \frac{(r f)(x)-(r f)(a)}{x-a}=\lim _{x \rightarrow a} r \frac{f(x)-f(a)}{x-a}=r f^{\prime}(a)$.

Product Rule

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the product $f \cdot g$ is also differentiable at a. Moreover, $(f \cdot g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a)$.
Proof: Since f and g are differentiable at the point a, there is an open interval $I=(c, d)$ containing a such that both f and g are defined on I. For every $x \in I \backslash\{a\}$ we have

$$
\begin{aligned}
& f(x) g(x)-f(a) g(a)=f(x) g(x)-f(a) g(x)+f(a) g(x) \\
& \quad-f(a) g(a)=(f(x)-f(a)) g(x)+f(a)(g(x)-g(a)) .
\end{aligned}
$$

Then $\frac{(f \cdot g)(x)-(f \cdot g)(a)}{x-a}=\frac{f(x)-f(a)}{x-a} g(x)+f(a) \frac{g(x)-g(a)}{x-a}$ so that

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{(f \cdot g)(x)-(f \cdot g)(a)}{x-a}=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a} g(x) \\
& \quad+\lim _{x \rightarrow a} f(a) \cdot \lim _{x \rightarrow a} \frac{g(x)-g(a)}{x-a}=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) .
\end{aligned}
$$

Reciprocal Rule

Theorem If a function f is differentiable at a point $a \in \mathbb{R}$ and $f(a) \neq 0$, then the function $1 / f$ is also differentiable at a. Moreover, $(1 / f)^{\prime}(a)=-f^{\prime}(a) / f^{2}(a)$.
Proof: The function f is defined on an open interval (c, d) containing a. We know that f is continuous at a. Since $\varepsilon=|f(a)|>0$, there exists $\delta>0$ such that $|f(x)-f(a)|<\varepsilon$ for any $x \in I=(c, d) \cap(a-\delta, a+\delta)$. Then $f(x) \neq 0$ for all $x \in I$. In particular, the function $1 / f$ is defined on I, an open interval containing a. Now

$$
\begin{aligned}
& \lim _{x \rightarrow a} \frac{(1 / f)(x)-(1 / f)(a)}{x-a}=\lim _{x \rightarrow a}\left(\frac{1}{f(x)}-\frac{1}{f(a)}\right) \frac{1}{x-a} \\
& =\lim _{x \rightarrow a} \frac{f(a)-f(x)}{f(x) f(a)} \cdot \frac{1}{x-a}=\lim _{x \rightarrow a}\left(-\frac{f(x)-f(a)}{x-a} \cdot \frac{1}{f(x) f(a)}\right) \\
& =-\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a} \frac{1}{f(x) f(a)}=-\frac{f^{\prime}(a)}{f^{2}(a)} .
\end{aligned}
$$

Difference Rule and Quotient Rule

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then the difference $f-g$ is also differentiable at a. Moreover, $(f-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a)$.
Proof: By the Homogeneous Rule, the function $-g=(-1) g$ is differentiable at a and $(-g)^{\prime}(a)=-g^{\prime}(a)$. By the Sum Rule, the function $f-g=f+(-g)$ is also differentiable at a and $(f-g)^{\prime}(a)=f^{\prime}(a)+(-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a)$.

Theorem If functions f and g are differentiable at $a \in \mathbb{R}$ and $g(a) \neq 0$, then the quotient f / g is also differentiable at
a. Moreover, $\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)}$.

Proof: By the Reciprocal Rule, the function $1 / g$ is differentiable at a and $(1 / g)^{\prime}(a)=-g^{\prime}(a) / g^{2}(a)$. By the Product Rule, the function $f / g=f \cdot(1 / g)$ is also differentiable at a and $(f / g)^{\prime}(a)=f^{\prime}(a) / g(a)+f(a)(1 / g)^{\prime}(a)$ $=\left(f^{\prime}(a) g(a)-f(a) g^{\prime}(a)\right) / g^{2}(a)$.

Chain Rule

Theorem If a function f is differentiable at a point $a \in \mathbb{R}$ and a function g is differentiable at $f(a)$, then the composition $g \circ f$ is differentiable at a. Moreover, $(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a)$.
Proof: The function f is defined on an open interval $I=(a-\delta, a+\delta)$ while g is defined on an open interval $J=(f(a)-\varepsilon, f(a)+\varepsilon)$. Since f is continuous at a, there exists $\delta_{0} \in(0, \delta)$ such that $f\left(I_{0}\right) \subset J$, where $I_{0}=\left(a-\delta_{0}, a+\delta_{0}\right)$. Then $g \circ f$ is defined on I_{0}. For any $x \in I_{0}$ such that $f(x) \neq f(a)$,

$$
\frac{(g \circ f)(x)-(g \circ f)(a)}{x-a}=\frac{g(f(x))-g(f(a))}{f(x)-f(a)} \cdot \frac{f(x)-f(a)}{x-a} .
$$

This implies the Chain Rule unless there is a sequence $\left\{x_{n}\right\}$ converging to a such that $x_{n} \neq a$ while $f\left(x_{n}\right)=f(a)$. In this case, one can show that $(g \circ f)^{\prime}(a)=f^{\prime}(a)=0$.

Examples

- $f(x)=\cos x, x \in \mathbb{R}$.

The function f can be represented as a composition $f=h \circ g$, where $g(x)=x+\pi / 2$ and $h(x)=\sin x, x \in \mathbb{R}$. Since $g^{\prime}(x)=1$ and $h^{\prime}(x)=\cos x$ for all $x \in \mathbb{R}$, the Chain Rule implies that f is differentiable on \mathbb{R} and $f^{\prime}(x)=h^{\prime}(g(x)) g^{\prime}(x)=\cos (x+\pi / 2)=-\sin x$ for all $x \in \mathbb{R}$.

- $f(x)=\tan x, x \in(-\pi / 2, \pi / 2)$.

Since $f(x)=\sin x / \cos x$ and $\cos x \neq 0$ for all $x \in(-\pi / 2, \pi / 2)$, the Quotient Rule implies that f is differentiable on ($-\pi / 2, \pi / 2$) and
$f^{\prime}(x)=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}$
for all $x \in(\pi / 2, \pi / 2)$.

