MATH 409 Advanced Calculus I

Lecture 15: Derivatives of elementary functions. Derivative of the inverse function.

The derivative

Definition. A real function f is said to be **differentiable** at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$\lim_{h\to 0}\frac{f(a+h)-f(a)}{h}$$

exists. The limit is denoted f'(a) and called the **derivative** of f at a.

An equivalent condition is $f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$.

Remark. The one-sided limits $\lim_{x\to a+} \frac{f(x)-f(a)}{x-a}$ and $\lim_{x\to a-} \frac{f(x)-f(a)}{x-a}$ are called the right-hand and left-hand derivatives of f at a. One of them or both might exist even if f is not differentiable at a.

Differentiability theorems

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then their sum f + g, difference f - g, and product $f \cdot g$ are also differentiable at a. Moreover,

$$(f+g)'(a) = f'(a) + g'(a),$$

 $(f-g)'(a) = f'(a) - g'(a),$
 $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$

If, additionally, $g(a) \neq 0$ then the quotient f/g is also differentiable at a and

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a)g(a) - f(a)g'(a)}{(g(a))^2}$$

Theorem If a function f is differentiable at a point $a \in \mathbb{R}$ and a function g is differentiable at f(a), then the composition $g \circ f$ is differentiable at a. Moreover,

$$(g \circ f)'(a) = g'(f(a)) \cdot f'(a).$$

The derivative as a function

Definition. A function f is said to be **differentiable** on an open interval (c, d) if it is differentiable at each point of (c, d). It is said to be **differentiable** on a closed interval [c, d] if it is differentiable on the open interval (c, d) and, additionally, there exist the right-hand derivative of f at c and the left-hand derivative at d.

Suppose that a function f is differentiable on an interval I. Then the derivative of f can be regarded as a function on I.

Notation:
$$f'$$
. Alternative notation: \dot{f} , $\frac{df}{dx}$, $D_x f$, $f^{(1)}$.

The value of the derivative function at a point $a \in I$ is denoted f'(a) or $(f(x))'|_{x=a}$.

For example, the derivative of a function $f(x) = x^2$ at 2 can be denoted f'(2) or $(x^2)'|_{x=2}$, but not $(2^2)'$.

Higher-order derivatives

Higher-order derivatives of a function f are defined inductively. Namely, for any integer $n \ge 2$ and any $a \in \mathbb{R}$, the *n*-th **derivative** of f at the point a, denoted $f^{(n)}(a)$, is defined by $f^{(n)}(a) = (f^{(n-1)})'(a)$.

Let *I* be an interval of the real line \mathbb{R} . We denote by C(I) or $C^{0}(I)$ the set of all continuous functions on *I*. For any $n \in \mathbb{N}$ we denote by $C^{n}(I)$ the set of all functions $f : I \to \mathbb{R}$ that are *n* times continuously differentiable on *I*, i.e., the *n*-th derivative $f^{(n)}$ is well-defined and continuous on *I*. Finally, $C^{\infty}(I)$ denotes the set of all functions $f : I \to \mathbb{R}$ that are infinitely differentiable on *I*, i.e., $f^{(n)}(a)$ is well-defined for all $n \in \mathbb{N}$ and $a \in I$.

We know that every function differentiable at a point *a* is also continuous at *a*. It follows that $C^{n+1}(I) \subset C^n(I)$ for all $n \ge 0$. Besides, $C^{\infty}(I) = \bigcap_{n \ge 0} C^n(I)$.

Examples of differentiable functions

- 1' = 0.
- x' = 1.

•
$$(x^2)' = 2x$$
.
• $(\frac{1}{x})' = -\frac{1}{x^2}$ on $\mathbb{R} \setminus \{0\}$.

•
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$
 on $(0,\infty)$.

•
$$(\sin x)' = \cos x$$
.

•
$$(\cos x)' = -\sin x$$
.

•
$$(\tan x)' = \frac{1}{\cos^2 x}$$
 on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Examples

•
$$f(0) = 0$$
, $f(x) = x \sin \frac{1}{x}$, $x \neq 0$.

Using the Product Rule and the Chain Rule, we obtain that the function f is differentiable on $\mathbb{R} \setminus \{0\}$. Moreover, for any $x \neq 0$,

$$f'(x) = \left(x\sin\frac{1}{x}\right)' = \sin\frac{1}{x} + x\left(\sin\frac{1}{x}\right)'$$
$$= \sin\frac{1}{x} + x\sin'\frac{1}{x}\left(\frac{1}{x}\right)' = \sin\frac{1}{x} + x\cos\frac{1}{x}\left(-\frac{1}{x^2}\right)$$
$$= \sin\frac{1}{x} - \frac{1}{x}\cos\frac{1}{x}.$$

Also, we know that f is continuous at 0. However it is not differentiable at 0. Indeed, $\frac{f(h) - f(0)}{h} = \sin \frac{1}{h}$, which has no limit as $h \to 0$.

Examples

•
$$g(0) = 0$$
, $g(x) = x^2 \sin \frac{1}{x}$, $x \neq 0$.

Using the Product Rule and the previous example, we obtain that the function g is differentiable on $\mathbb{R} \setminus \{0\}$. Moreover, for any $x \neq 0$,

$$g'(x) = \left(x \cdot x \sin \frac{1}{x}\right)' = x \sin \frac{1}{x} + x \left(x \sin \frac{1}{x}\right)'$$
$$= x \sin \frac{1}{x} + x \left(\sin \frac{1}{x} - \frac{1}{x} \cos \frac{1}{x}\right) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}.$$

The function g is differentiable at 0 as well. Indeed,

$$rac{g(h)-g(0)}{h}=h\,\sinrac{1}{h} o 0\ \, ext{as}\ \, h o 0.$$

Notice that g is not continuously differentiable on \mathbb{R} since g' is not continuous at 0. Namely, $\lim_{x\to 0} g'(x)$ does not exist.

Power rule: integer exponents

Theorem $(x^n)' = nx^{n-1}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$. *Proof:* The proof is by induction on *n*. In the case n = 1, we have $(x^1)' = x' = 1 = 1 \cdot x^0$ for all $x \in \mathbb{R}$. Now assume that $(x^n)' = nx^{n-1}$ for some $n \in \mathbb{N}$ and all $x \in \mathbb{R}$. Using the Product Rule, we obtain $(x^{n+1})' = (x^n x)' = (x^n)'x + x^n x'$ $= nx^{n-1}x + x^n = (n+1)x^n$.

Remark. The theorem can also be proved directly using the formula $\frac{x^n - a^n}{x - a} = x^{n-1} + x^{n-2}a + \dots + xa^{n-2} + a^{n-1}$.

Theorem $(x^{-n})' = -nx^{-n-1}$ for all $x \neq 0$, $n \in \mathbb{N}$.

Proof: Using the Reciprocal Rule, we obtain $(x^{-n})' = (1/x^n)' = -(x^n)'/(x^n)^2 = -nx^{n-1}/x^{2n} = -nx^{-n-1}.$

Derivative of the inverse function

Theorem Suppose f is an invertible continuous function. If f is differentiable at a point a and $f'(a) \neq 0$, then the inverse function is differentiable at the point b = f(a) and, moreover,

$$(f^{-1})'(b) = \frac{1}{f'(a)}.$$

Remark. In the case f'(a) = 0, the inverse function f^{-1} is not differentiable at f(a). Indeed, if f^{-1} is differentiable at b = f(a), then the Chain Rule implies that

$$(f^{-1} \circ f)'(a) = (f^{-1})'(b) \cdot f'(a).$$

Obviously, $f^{-1} \circ f$ is the identity function. Therefore $(f^{-1} \circ f)'(a) = 1 \neq 0$ so that $f'(a) \neq 0$.

Proof of the theorem: The function f is defined on an open interval I = (c, d) containing a. Since f is continuous and invertible, it follows from the Intermediate Value theorem that f is strictly monotone on I, the image f(I) is an open interval containing b, and the inverse function f^{-1} is continuous on f(I). Besides, f^{-1} is strictly monotone on f(I).

We have
$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a)$$
. Since $f'(a) \neq 0$, it
follows that $\lim_{x \to a} \frac{x - a}{f(x) - f(a)} = \frac{1}{f'(a)}$. Since f^{-1} is

continuous and monotone on the interval f(I), we obtain that $f^{-1}(y) \rightarrow a$ and $f^{-1}(y) \neq a$ when $y \rightarrow b$ and $y \neq b$.

Therefore
$$\lim_{y \to b} \frac{f^{-1}(y) - a}{y - b} = \lim_{y \to b} \frac{f^{-1}(y) - a}{f(f^{-1}(y)) - b}$$

= $\lim_{x \to a} \frac{x - a}{f(x) - f(a)} = \frac{1}{f'(a)}.$

Example

•
$$f(x) = \arccos x, x \in [-1, 1].$$

The function $g(y) = \cos y$ is strictly decreasing on the interval $[0, \pi]$ and maps this interval onto [-1, 1]. By definition, the function $f(x) = \arccos x$ is the inverse of the restriction of g to $[0, \pi]$. Notice that $g'(0) = g'(\pi) = 0$ and $g'(y) \neq 0$ for $y \in (0, \pi)$. It follows that the function f is differentiable on (-1, 1) and not differentiable at 1 and -1. Moreover, for any $x \in (-1, 1)$,

$$f'(x) = \frac{1}{g'(f(x))} = -\frac{1}{\sin(\arccos x)}.$$

Let $y = \arccos x$. We have $\sin^2 y + \cos^2 y = 1$. Besides, $\sin y > 0$ since $y \in (0, \pi)$. Consequently,

$$\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}$$
. Thus $f'(x) = -\frac{1}{\sqrt{1 - x^2}}$.

Exponential and logarithmic functions

Theorem The sequence $x_n = (1 + \frac{1}{n})^n$, $n \in \mathbb{N}$ is increasing and bounded, hence convergent.

The limit is the number e = 2.718281828... ("I'm forming a mnemonic to remember a constant in analysis").

Corollary
$$\lim_{x\to 0} (1+x)^{1/x} = e.$$

For any a > 0, $a \neq 1$ the exponential function $f(x) = a^x$ is strictly monotone and continuous on \mathbb{R} . It maps \mathbb{R} onto $(0,\infty)$. Therefore the inverse function $g(y) = \log_a y$ is strictly monotone and continuous on $(0,\infty)$. The natural logarithm $\log_e y$ is also denoted $\log y$.

Since
$$(1+h)^{1/h} \to e$$
 as $h \to 0$, it follows that
 $h^{-1}\log(1+h) = \log(1+h)^{1/h} \to \log e = 1$ as $h \to 0$. In
other words, $(\log y)'|_{y=1} = 1$. This implies that
 $(e^x)'|_{x=0} = 1$.

Examples

•
$$f(x) = e^x$$
, $x \in \mathbb{R}$.
 $\frac{f(x+h) - f(x)}{h} = \frac{e^{x+h} - e^x}{h} = \frac{e^x e^h - e^x}{h} = \frac{e^x (e^h - 1)}{h}$
for all $x, h \in \mathbb{R}$. Therefore for any $x \in \mathbb{R}$,
 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x f'(0) = e^x$.
• $f(x) = a^x$, $x \in \mathbb{R}$, where $a > 0$.
 $f(x) = e^{\log a^x} = e^{x \log a}$ so that $f'(x) = e^{x \log a} \log a = a^x \log a$.
• $f(x) = \log x$, $x \in (0, \infty)$.

Since f is the inverse of the function $g(y) = e^y$, we obtain $f'(x) = 1/g'(\log x) = 1/e^{\log x} = 1/x$ for all x > 0.

Power rule: general case

Theorem $(x^{\alpha})' = \alpha x^{\alpha-1}$ for all x > 0 and $\alpha \in \mathbb{R}$.

Proof: Let us fix a number $\alpha \in \mathbb{R}$ and consider a function $f(x) = x^{\alpha}$, $x \in (0, \infty)$. For any x > 0we obtain $f(x) = e^{\log(x^{\alpha})} = e^{\alpha \log x} = a^{\log x}$, where $a = e^{\alpha}$. Hence $f = h \circ g$, where $g(x) = \log x$, x > 0 and $h(y) = a^y$, $y \in \mathbb{R}$. By the Chain Rule, $f'(x) = h'(g(x)) \cdot g'(x) = a^{\log x} \log a \cdot (\log x)'$ $f(x) \log a \cdot (\log x)' = f(x) \cdot \alpha (\log x)'$ $= f(x) \cdot \alpha / x = x^{\alpha} \cdot \alpha / x = \alpha x^{\alpha - 1}.$