MATH 409
 Advanced Calculus I

Lecture 15:

Derivatives of elementary functions. Derivative of the inverse function.

The derivative

Definition. A real function f is said to be differentiable at a point $a \in \mathbb{R}$ if it is defined on an open interval containing a and the limit

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. The limit is denoted $f^{\prime}(a)$ and called the derivative of f at a.
An equivalent condition is $f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$.
Remark. The one-sided limits $\lim _{x \rightarrow a+} \frac{f(x)-f(a)}{x-a}$ and
$\lim _{x \rightarrow a-} \frac{f(x)-f(a)}{x-a}$ are called the right-hand and left-hand derivatives of f at a. One of them or both might exist even if f is not differentiable at a.

Differentiability theorems

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then their sum $f+g$, difference $f-g$, and product $f \cdot g$ are also differentiable at a. Moreover,

$$
\begin{gathered}
(f+g)^{\prime}(a)=f^{\prime}(a)+g^{\prime}(a), \\
(f-g)^{\prime}(a)=f^{\prime}(a)-g^{\prime}(a), \\
(f \cdot g)^{\prime}(a)=f^{\prime}(a) g(a)+f(a) g^{\prime}(a) .
\end{gathered}
$$

If, additionally, $g(a) \neq 0$ then the quotient f / g is also differentiable at a and

$$
\left(\frac{f}{g}\right)^{\prime}(a)=\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{(g(a))^{2}}
$$

Theorem If a function f is differentiable at a point $a \in \mathbb{R}$ and a function g is differentiable at $f(a)$, then the composition $g \circ f$ is differentiable at a. Moreover,

$$
(g \circ f)^{\prime}(a)=g^{\prime}(f(a)) \cdot f^{\prime}(a) .
$$

The derivative as a function

Definition. A function f is said to be differentiable on an open interval (c, d) if it is differentiable at each point of (c, d). It is said to be differentiable on a closed interval $[c, d]$ if it is differentiable on the open interval (c, d) and, additionally, there exist the right-hand derivative of f at c and the left-hand derivative at d.

Suppose that a function f is differentiable on an interval I. Then the derivative of f can be regarded as a function on I.
Notation: f^{\prime}. Alternative notation: $\dot{f}, \frac{d f}{d x}, D_{x} f, f^{(1)}$.
The value of the derivative function at a point $a \in I$ is denoted $f^{\prime}(a)$ or $\left.(f(x))^{\prime}\right|_{x=a}$.
For example, the derivative of a function $f(x)=x^{2}$ at 2 can be denoted $f^{\prime}(2)$ or $\left.\left(x^{2}\right)^{\prime}\right|_{x=2}$, but not $\left(2^{2}\right)^{\prime}$.

Higher-order derivatives

Higher-order derivatives of a function f are defined inductively. Namely, for any integer $n \geq 2$ and any $a \in \mathbb{R}$, the n-th derivative of f at the point a, denoted $f^{(n)}(a)$, is defined by $f^{(n)}(a)=\left(f^{(n-1)}\right)^{\prime}(a)$.
Let I be an interval of the real line \mathbb{R}. We denote by $C(I)$ or $C^{0}(I)$ the set of all continuous functions on I. For any $n \in \mathbb{N}$ we denote by $C^{n}(I)$ the set of all functions $f: I \rightarrow \mathbb{R}$ that are n times continuously differentiable on l, i.e., the n-th derivative $f^{(n)}$ is well-defined and continuous on I. Finally, $C^{\infty}(I)$ denotes the set of all functions $f: I \rightarrow \mathbb{R}$ that are infinitely differentiable on I, i.e., $f^{(n)}(a)$ is well-defined for all $n \in \mathbb{N}$ and $a \in I$.

We know that every function differentiable at a point a is also continuous at a. It follows that $C^{n+1}(I) \subset C^{n}(I)$ for all $n \geq 0$. Besides, $C^{\infty}(I)=\bigcap_{n \geq 0} C^{n}(I)$.

Examples of differentiable functions

- $1^{\prime}=0$.
- $x^{\prime}=1$.
- $\left(x^{2}\right)^{\prime}=2 x$.
- $\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}$ on $\mathbb{R} \backslash\{0\}$.
- $(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$ on $(0, \infty)$.
- $(\sin x)^{\prime}=\cos x$.
- $(\cos x)^{\prime}=-\sin x$.
- $(\tan x)^{\prime}=\frac{1}{\cos ^{2} x}$ on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Examples

- $f(0)=0, f(x)=x \sin \frac{1}{x}, x \neq 0$.

Using the Product Rule and the Chain Rule, we obtain that the function f is differentiable on $\mathbb{R} \backslash\{0\}$. Moreover, for any $x \neq 0$,

$$
\begin{aligned}
f^{\prime}(x) & =\left(x \sin \frac{1}{x}\right)^{\prime}=\sin \frac{1}{x}+x\left(\sin \frac{1}{x}\right)^{\prime} \\
& =\sin \frac{1}{x}+x \sin ^{\prime} \frac{1}{x}\left(\frac{1}{x}\right)^{\prime}=\sin \frac{1}{x}+x \cos \frac{1}{x}\left(-\frac{1}{x^{2}}\right) \\
& =\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}
\end{aligned}
$$

Also, we know that f is continuous at 0 . However it is not differentiable at 0 . Indeed, $\frac{f(h)-f(0)}{h}=\sin \frac{1}{h}$, which has no limit as $h \rightarrow 0$.

Examples

- $g(0)=0, g(x)=x^{2} \sin \frac{1}{x}, x \neq 0$.

Using the Product Rule and the previous example, we obtain that the function g is differentiable on $\mathbb{R} \backslash\{0\}$. Moreover, for any $x \neq 0$,

$$
\begin{aligned}
g^{\prime}(x) & =\left(x \cdot x \sin \frac{1}{x}\right)^{\prime}=x \sin \frac{1}{x}+x\left(x \sin \frac{1}{x}\right)^{\prime} \\
& =x \sin \frac{1}{x}+x\left(\sin \frac{1}{x}-\frac{1}{x} \cos \frac{1}{x}\right)=2 x \sin \frac{1}{x}-\cos \frac{1}{x}
\end{aligned}
$$

The function g is differentiable at 0 as well. Indeed,

$$
\frac{g(h)-g(0)}{h}=h \sin \frac{1}{h} \rightarrow 0 \text { as } h \rightarrow 0
$$

Notice that g is not continuously differentiable on \mathbb{R} since g^{\prime} is not continuous at 0 . Namely, $\lim _{x \rightarrow 0} g^{\prime}(x)$ does not exist.

Power rule: integer exponents

Theorem $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
Proof: The proof is by induction on n. In the case $n=1$, we have $\left(x^{1}\right)^{\prime}=x^{\prime}=1=1 \cdot x^{0}$ for all $x \in \mathbb{R}$. Now assume that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for some $n \in \mathbb{N}$ and all $x \in \mathbb{R}$. Using the Product Rule, we obtain $\left(x^{n+1}\right)^{\prime}=\left(x^{n} x\right)^{\prime}=\left(x^{n}\right)^{\prime} x+x^{n} x^{\prime}$ $=n x^{n-1} x+x^{n}=(n+1) x^{n}$.
Remark. The theorem can also be proved directly using the formula $\frac{x^{n}-a^{n}}{x-a}=x^{n-1}+x^{n-2} a+\cdots+x a^{n-2}+a^{n-1}$.

Theorem $\left(x^{-n}\right)^{\prime}=-n x^{-n-1}$ for all $x \neq 0, n \in \mathbb{N}$.
Proof: Using the Reciprocal Rule, we obtain
$\left(x^{-n}\right)^{\prime}=\left(1 / x^{n}\right)^{\prime}=-\left(x^{n}\right)^{\prime} /\left(x^{n}\right)^{2}=-n x^{n-1} / x^{2 n}=-n x^{-n-1}$.

Derivative of the inverse function

Theorem Suppose f is an invertible continuous function. If f is differentiable at a point a and $f^{\prime}(a) \neq 0$, then the inverse function is differentiable at the point $b=f(a)$ and, moreover,

$$
\left(f^{-1}\right)^{\prime}(b)=\frac{1}{f^{\prime}(a)}
$$

Remark. In the case $f^{\prime}(a)=0$, the inverse function f^{-1} is not differentiable at $f(a)$. Indeed, if f^{-1} is differentiable at $b=f(a)$, then the Chain Rule implies that

$$
\left(f^{-1} \circ f\right)^{\prime}(a)=\left(f^{-1}\right)^{\prime}(b) \cdot f^{\prime}(a) .
$$

Obviously, $f^{-1} \circ f$ is the identity function. Therefore $\left(f^{-1} \circ f\right)^{\prime}(a)=1 \neq 0$ so that $f^{\prime}(a) \neq 0$.

Proof of the theorem: The function f is defined on an open interval $I=(c, d)$ containing a. Since f is continuous and invertible, it follows from the Intermediate Value theorem that f is strictly monotone on I, the image $f(I)$ is an open interval containing b, and the inverse function f^{-1} is continuous on $f(I)$. Besides, f^{-1} is strictly monotone on $f(I)$.
We have $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=f^{\prime}(a)$. Since $f^{\prime}(a) \neq 0$, it follows that $\lim _{x \rightarrow a} \frac{x-a}{f(x)-f(a)}=\frac{1}{f^{\prime}(a)}$. Since f^{-1} is continuous and monotone on the interval $f(I)$, we obtain that $f^{-1}(y) \rightarrow a$ and $f^{-1}(y) \neq a$ when $y \rightarrow b$ and $y \neq b$.
Therefore $\lim _{y \rightarrow b} \frac{f^{-1}(y)-a}{y-b}=\lim _{y \rightarrow b} \frac{f^{-1}(y)-a}{f\left(f^{-1}(y)\right)-b}$
$=\lim _{x \rightarrow a} \frac{x-a}{f(x)-f(a)}=\frac{1}{f^{\prime}(a)}$.

Example

- $f(x)=\arccos x, x \in[-1,1]$.

The function $g(y)=\cos y$ is strictly decreasing on the interval $[0, \pi]$ and maps this interval onto $[-1,1]$. By definition, the function $f(x)=\arccos x$ is the inverse of the restriction of g to $[0, \pi]$. Notice that $g^{\prime}(0)=g^{\prime}(\pi)=0$ and $g^{\prime}(y) \neq 0$ for $y \in(0, \pi)$. It follows that the function f is differentiable on $(-1,1)$ and not differentiable at 1 and -1 . Moreover, for any $x \in(-1,1)$,

$$
f^{\prime}(x)=\frac{1}{g^{\prime}(f(x))}=-\frac{1}{\sin (\arccos x)} .
$$

Let $y=\arccos x$. We have $\sin ^{2} y+\cos ^{2} y=1$. Besides, $\sin y>0$ since $y \in(0, \pi)$. Consequently,
$\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}}$. Thus $f^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}}$.

Exponential and logarithmic functions

Theorem The sequence $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in \mathbb{N}$ is increasing and bounded, hence convergent.
The limit is the number $e=2.718281828 \ldots$ ("I'm forming a mnemonic to remember a constant in analysis").
Corollary $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$.
For any $a>0, a \neq 1$ the exponential function $f(x)=a^{x}$ is strictly monotone and continuous on \mathbb{R}. It maps \mathbb{R} onto $(0, \infty)$. Therefore the inverse function $g(y)=\log _{a} y$ is strictly monotone and continuous on $(0, \infty)$. The natural logarithm $\log _{e} y$ is also denoted $\log y$.

Since $(1+h)^{1 / h} \rightarrow e$ as $h \rightarrow 0$, it follows that $h^{-1} \log (1+h)=\log (1+h)^{1 / h} \rightarrow \log e=1$ as $h \rightarrow 0$. In other words, $\left.(\log y)^{\prime}\right|_{y=1}=1$. This implies that $\left.\left(e^{x}\right)^{\prime}\right|_{x=0}=1$.

Examples

- $f(x)=e^{x}, \quad x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{e^{x+h}-e^{x}}{h}=\frac{e^{x} e^{h}-e^{x}}{h}=\frac{e^{x}\left(e^{h}-1\right)}{h}$
for all $x, h \in \mathbb{R}$. Therefore for any $x \in \mathbb{R}$,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x} f^{\prime}(0)=e^{x}$.
- $f(x)=a^{x}, \quad x \in \mathbb{R}$, where $a>0$.

- $f(x)=\log x, \quad x \in(0, \infty)$.

Since f is the inverse of the function $g(y)=e^{y}$, we obtain $f^{\prime}(x)=1 / g^{\prime}(\log x)=1 / e^{\log x}=1 / x$ for all $x>0$.

Power rule: general case

Theorem $\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}$ for all $x>0$ and $\alpha \in \mathbb{R}$.
Proof: Let us fix a number $\alpha \in \mathbb{R}$ and consider a function $f(x)=x^{\alpha}, x \in(0, \infty)$. For any $x>0$ we obtain $f(x)=e^{\log \left(x^{\alpha}\right)}=e^{\alpha \log x}=a^{\log x}$, where $a=e^{\alpha}$. Hence $f=h \circ g$, where $g(x)=\log x$, $x>0$ and $h(y)=a^{y}, y \in \mathbb{R}$. By the Chain Rule,

$$
\begin{aligned}
f^{\prime}(x) & =h^{\prime}(g(x)) \cdot g^{\prime}(x)=a^{\log x} \log a \cdot(\log x)^{\prime} \\
& =f(x) \log a \cdot(\log x)^{\prime}=f(x) \cdot \alpha(\log x)^{\prime} \\
& =f(x) \cdot \alpha / x=x^{\alpha} \cdot \alpha / x=\alpha x^{\alpha-1} .
\end{aligned}
$$

