
MATH 409

Advanced Calculus I

Lecture 15:

Derivatives of elementary functions.

Derivative of the inverse function.



The derivative

Definition. A real function f is said to be
differentiable at a point a ∈ R if it is defined on

an open interval containing a and the limit

lim
h→0

f (a + h)− f (a)

h

exists. The limit is denoted f ′(a) and called the
derivative of f at a.

An equivalent condition is f ′(a) = lim
x→a

f (x)− f (a)

x − a
.

Remark. The one-sided limits lim
x→a+

f (x)−f (a)
x−a

and

lim
x→a−

f (x)−f (a)
x−a

are called the right-hand and left-hand

derivatives of f at a. One of them or both might exist even if
f is not differentiable at a.



Differentiability theorems

Theorem If functions f and g are differentiable at a point
a ∈ R, then their sum f + g , difference f − g , and product
f · g are also differentiable at a. Moreover,

(f + g)′(a) = f ′(a) + g ′(a),

(f − g)′(a) = f ′(a)− g ′(a),

(f · g)′(a) = f ′(a)g(a) + f (a)g ′(a).

If, additionally, g(a) 6= 0 then the quotient f /g is also
differentiable at a and

(

f

g

)′

(a) =
f ′(a)g(a)− f (a)g ′(a)

(g(a))2
.

Theorem If a function f is differentiable at a point a ∈ R

and a function g is differentiable at f (a), then the
composition g ◦ f is differentiable at a. Moreover,

(g ◦ f )′(a) = g ′(f (a)) · f ′(a).



The derivative as a function

Definition. A function f is said to be differentiable on an
open interval (c, d) if it is differentiable at each point of
(c, d). It is said to be differentiable on a closed interval
[c, d ] if it is differentiable on the open interval (c, d) and,
additionally, there exist the right-hand derivative of f at c and
the left-hand derivative at d .

Suppose that a function f is differentiable on an interval I .
Then the derivative of f can be regarded as a function on I .

Notation: f ′. Alternative notation: ḟ ,
df

dx
, Dx f , f (1).

The value of the derivative function at a point a ∈ I is
denoted f ′(a) or (f (x))′|x=a.

For example, the derivative of a function f (x) = x2 at 2 can
be denoted f ′(2) or (x2)′|x=2, but not (22)′.



Higher-order derivatives

Higher-order derivatives of a function f are defined inductively.
Namely, for any integer n ≥ 2 and any a ∈ R, the n-th

derivative of f at the point a, denoted f (n)(a), is defined by
f (n)(a) = (f (n−1))′(a).

Let I be an interval of the real line R. We denote by C (I ) or
C 0(I ) the set of all continuous functions on I . For any n ∈ N

we denote by C n(I ) the set of all functions f : I → R that are
n times continuously differentiable on I , i.e., the n-th
derivative f (n) is well-defined and continuous on I . Finally,
C∞(I ) denotes the set of all functions f : I → R that are
infinitely differentiable on I , i.e., f (n)(a) is well-defined for
all n ∈ N and a ∈ I .

We know that every function differentiable at a point a is also
continuous at a. It follows that C n+1(I ) ⊂ C n(I ) for all
n ≥ 0. Besides, C∞(I ) =

⋂

n≥0

C n(I ).



Examples of differentiable functions

• 1′ = 0.

• x ′ = 1.

• (x2)′ = 2x .

•
(

1

x

)′
= − 1

x2
on R \ {0}.

• (
√
x)′ =

1

2
√
x

on (0,∞).

• (sin x)′ = cos x .

• (cos x)′ = − sin x .

• (tan x)′ =
1

cos2 x
on

(

−π

2
,
π

2

)

.



Examples

• f (0) = 0, f (x) = x sin
1

x
, x 6= 0.

Using the Product Rule and the Chain Rule, we obtain that
the function f is differentiable on R \ {0}. Moreover, for any
x 6= 0,

f ′(x) =

(

x sin
1

x

)′

= sin
1

x
+ x

(

sin
1

x

)′

= sin
1

x
+ x sin′

1

x

(

1

x

)′

= sin
1

x
+ x cos

1

x

(

− 1

x2

)

= sin
1

x
− 1

x
cos

1

x
.

Also, we know that f is continuous at 0. However it is not

differentiable at 0. Indeed,
f (h)− f (0)

h
= sin

1

h
, which has

no limit as h → 0.



Examples

• g(0) = 0, g(x) = x2 sin
1

x
, x 6= 0.

Using the Product Rule and the previous example, we obtain
that the function g is differentiable on R \ {0}. Moreover, for
any x 6= 0,

g ′(x) =

(

x · x sin 1

x

)′

= x sin
1

x
+ x

(

x sin
1

x

)′

= x sin
1

x
+ x

(

sin
1

x
− 1

x
cos

1

x

)

= 2x sin
1

x
− cos

1

x
.

The function g is differentiable at 0 as well. Indeed,

g(h)− g(0)

h
= h sin

1

h
→ 0 as h → 0.

Notice that g is not continuously differentiable on R since g ′

is not continuous at 0. Namely, lim
x→0

g ′(x) does not exist.



Power rule: integer exponents

Theorem (xn)′ = nxn−1 for all x ∈ R and n ∈ N.

Proof: The proof is by induction on n. In the case n = 1,
we have (x1)′ = x ′ = 1 = 1 · x0 for all x ∈ R. Now assume
that (xn)′ = nxn−1 for some n ∈ N and all x ∈ R. Using
the Product Rule, we obtain (xn+1)′ = (xnx)′ = (xn)′x + xnx ′

= nxn−1x + xn = (n + 1)xn.

Remark. The theorem can also be proved directly using the

formula
xn − an

x − a
= xn−1 + xn−2a + · · ·+ xan−2 + an−1.

Theorem (x−n)′ = −nx−n−1 for all x 6= 0, n ∈ N.

Proof: Using the Reciprocal Rule, we obtain
(x−n)′ = (1/xn)′ = −(xn)′/(xn)2 = −nxn−1/x2n = −nx−n−1.



Derivative of the inverse function

Theorem Suppose f is an invertible continuous
function. If f is differentiable at a point a and
f ′(a) 6= 0, then the inverse function is differentiable

at the point b = f (a) and, moreover,

(f −1)′(b) =
1

f ′(a)
.

Remark. In the case f ′(a) = 0, the inverse function f −1 is
not differentiable at f (a). Indeed, if f −1 is differentiable at
b = f (a), then the Chain Rule implies that

(f −1 ◦ f )′(a) = (f −1)′(b) · f ′(a).
Obviously, f −1 ◦ f is the identity function. Therefore
(f −1 ◦ f )′(a) = 1 6= 0 so that f ′(a) 6= 0.



Proof of the theorem: The function f is defined on an open
interval I = (c, d) containing a. Since f is continuous and
invertible, it follows from the Intermediate Value theorem that
f is strictly monotone on I , the image f (I ) is an open interval
containing b, and the inverse function f −1 is continuous on
f (I ). Besides, f −1 is strictly monotone on f (I ).

We have lim
x→a

f (x)− f (a)

x − a
= f ′(a). Since f ′(a) 6= 0, it

follows that lim
x→a

x − a

f (x)− f (a)
=

1

f ′(a)
. Since f −1 is

continuous and monotone on the interval f (I ), we obtain that
f −1(y ) → a and f −1(y ) 6= a when y → b and y 6= b.

Therefore lim
y→b

f −1(y )− a

y − b
= lim

y→b

f −1(y )− a

f (f −1(y ))− b

= lim
x→a

x − a

f (x)− f (a)
=

1

f ′(a)
.



Example

• f (x) = arccos x , x ∈ [−1, 1].

The function g(y ) = cos y is strictly decreasing on the
interval [0, π] and maps this interval onto [−1, 1]. By
definition, the function f (x) = arccos x is the inverse of the
restriction of g to [0, π]. Notice that g ′(0) = g ′(π) = 0 and
g ′(y ) 6= 0 for y ∈ (0, π). It follows that the function f is
differentiable on (−1, 1) and not differentiable at 1 and −1.
Moreover, for any x ∈ (−1, 1),

f ′(x) =
1

g ′(f (x))
= − 1

sin(arccos x)
.

Let y = arccos x . We have sin2 y + cos2 y = 1. Besides,
sin y > 0 since y ∈ (0, π). Consequently,

sin y =
√

1− cos2 y =
√
1− x2. Thus f ′(x) = − 1√

1− x2
.



Exponential and logarithmic functions

Theorem The sequence xn =
(

1 + 1
n

)n
, n ∈ N is increasing

and bounded, hence convergent.

The limit is the number e = 2.718281828 . . . (“I’m forming a

mnemonic to remember a constant in analysis”).

Corollary lim
x→0

(1 + x)1/x = e.

For any a > 0, a 6= 1 the exponential function f (x) = ax is
strictly monotone and continuous on R. It maps R onto
(0,∞). Therefore the inverse function g(y ) = loga y is
strictly monotone and continuous on (0,∞). The natural
logarithm loge y is also denoted log y .

Since (1 + h)1/h → e as h → 0, it follows that
h−1 log(1 + h) = log(1 + h)1/h → log e = 1 as h → 0. In
other words, (log y )′|y=1 = 1. This implies that
(ex)′|x=0 = 1.



Examples

• f (x) = ex , x ∈ R.

f (x + h)− f (x)

h
=

ex+h − ex

h
=

exeh − ex

h
=

ex(eh − 1)

h

for all x , h ∈ R. Therefore for any x ∈ R,

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= ex lim

h→0

eh − 1

h
= ex f ′(0) = ex .

• f (x) = ax , x ∈ R, where a > 0.

f (x) = e log a
x

= ex log a so that f ′(x) = ex log a log a = ax log a.

• f (x) = log x , x ∈ (0,∞).

Since f is the inverse of the function g(y ) = ey , we obtain
f ′(x) = 1/g ′(log x) = 1/e log x = 1/x for all x > 0.



Power rule: general case

Theorem (xα)′ = αxα−1 for all x > 0 and α ∈ R.

Proof: Let us fix a number α ∈ R and consider a
function f (x) = xα, x ∈ (0,∞). For any x > 0

we obtain f (x) = e log(x
α) = eα log x = alog x , where

a = eα. Hence f = h ◦ g , where g(x) = log x ,

x > 0 and h(y) = ay , y ∈ R. By the Chain Rule,

f ′(x) = h′(g(x)) · g ′(x) = alog x log a · (log x)′
= f (x) log a · (log x)′ = f (x) · α(log x)′
= f (x) · α/x = xα · α/x = αxα−1.


