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Advanced Calculus I

Lecture 16:
Mean value theorem.

Taylor’s formula.



Points of local extremum

Let f : E → R be a function defined on a set E ⊂ R.

Definition. We say that f attains a local maximum at a
point c ∈ E if there exists ε > 0 such that f (x) ≤ f (c) for
all x ∈ E ∩ (c − ε, c + ε). Similarly, f attains a local
minimum at c ∈ E if there exists ε > 0 such that
f (x) ≥ f (c) for all x ∈ E ∩ (c − ε, c + ε).

Theorem (Fermat) If a function f is differentiable at a point
c of local extremum (maximum or minimum), then f ′(c) = 0.

Proof: Assume c is a point of local minimum. Since f is
defined on an open interval containing c, there exists ε > 0
such that f (c + h)− f (c) ≥ 0 for all h, |h| < ε. In the case

h > 0 this implies lim
h→0+

f (c+h)−f (c)
h

≥ 0. In the case h < 0

this implies lim
h→0−

f (c+h)−f (c)
h

≤ 0. Since both limits are equal

to f ′(c), we conclude that f ′(c) = 0.



Rolle’s Theorem

Theorem Suppose that a, b ∈ R with a < b. If a function
f is continuous on the interval [a, b], differentiable on (a, b),
and if f (a) = f (b), then f ′(c) = 0 for some c ∈ (a, b).

Proof: By the Extreme Value Theorem, the function f

attains its (absolute) maximum M and minimum m on [a, b].
In the case M 6= m, at least one of the extrema is attained at
a point c ∈ (a, b). Then f ′(c) = 0 due to Fermat’s theorem.
In the case M = m, the function f is constant on [a, b].
Then f ′(c) = 0 for all c ∈ (a, b).

Corollary If a polynomial P(x) has k > 1 distinct real roots,
then the polynomial P ′(x) has at least k−1 distinct real roots.

Proof: Let x1, x2, . . . , xk be distinct real roots of P(x)
ordered so that x1 < x2 < · · · < xk . By Rolle’s Theorem, the
derivative P ′(x) has a root in each of k − 1 intervals
(x1, x2), (x2, x3), . . . , (xk−1, xk).



Intermediate Value Theorem for derivatives

Theorem Suppose that a function f is
differentiable on an interval [a, b] with

f ′(a) 6= f ′(b). If y0 is a real number that lies
between f ′(a) and f ′(b), then f ′(x0) = y0 for some

x0 ∈ (a, b).

Remark. Although the function f is differentiable on [a, b],
the derivative f ′ need not be continuous on [a, b]. Hence the
Intermediate Value Theorem for continuous functions may not
apply here.

Corollary If a function f is differentiable on an
open interval (c , d), then the derivative f ′ has no
jump discontinuities in (c , d).



Proof of the theorem: First we consider the case when
f ′(a) < 0, f ′(b) > 0, and y0 = 0. Since f is differentiable on
[a, b], it is continuous on [a, b]. By the Extreme Value
Theorem, f attains its absolute minimum on [a, b] at some
point x0. Since f ′(a) < 0, we have f (a + h)− f (a) < 0 for
h > 0 sufficiently small. Hence x0 6= a. Similarly, f ′(b) > 0
implies that f (b + h)− f (b) < 0 for h < 0 sufficiently small.
Hence x0 6= b. We obtain that x0 ∈ (a, b). Then f ′(x0) = 0
due to Fermat’s theorem.

Next we consider the case when f ′(a) > 0, f ′(b) < 0, and
y0 = 0. Then the function g = −f is differentiable on [a, b]
with g ′(a) = −f ′(a) < 0 and g ′(b) = −f ′(b) > 0. By the
above, g ′(x0) = 0 for some x0 ∈ (a, b). Then f ′(x0) = 0.

In the general case, we consider a function h(x) = f (x)− y0x .
It is differentiable on [a, b] and h′(x) = f ′(x)− y0 for all
x ∈ [a, b]. It follows that 0 lies between h′(a) and h′(b). By
the above, h′(x0) = 0 for some x0 ∈ (a, b). Then
f ′(x0) = h′(x0) + y0 = y0.



Mean Value Theorem

Theorem If a function f is continuous on [a, b] and
differentiable on (a, b), then there is c ∈ (a, b) such that
f (b)− f (a) = f ′(c) (b − a).

Proof: Let h0(x) =
f (a) (b − x) + f (b) (x − a)

b − a
, x ∈ R.

We observe that the function h0 is differentiable. Moreover,

h′0(x) =
f (b)−f (a)

b−a
for all x ∈ R. By construction,

h0(a) = f (a) and h0(b) = f (b). It follows that the function
h = f − h0 is continuous on [a, b], differentiable on (a, b),
and satisfies h(a) = h(b) = 0. By Rolle’s Theorem,
h′(c) = 0 for some c ∈ (a, b). We have

h′(c) = f ′(c)− h′0(c) = f ′(c)−
f (b)− f (a)

b − a
.

Thus f ′(c) = (f (b)− f (a))/(b − a) or, equivalently,
f (b)− f (a) = f ′(c) (b − a).



Monotone functions (revisited)

Theorem Suppose that a function f is continuous on an
interval [a, b] and differentiable on (a, b).
(i) f is increasing on [a, b] if and only if f ′ ≥ 0 on (a, b).
(ii) f is decreasing on [a, b] if and only if f ′ ≤ 0 on (a, b).
(iii) If f ′ > 0 on (a, b), then f is strictly increasing on [a, b].
(iv) If f ′ < 0 on (a, b), then f is strictly decreasing on [a, b].
(v) f is constant on [a, b] if and only if f ′ = 0 on (a, b).

Proof: Let a ≤ x1 < x2 ≤ b. By the Mean Value Theorem,
f (x2)− f (x1) = f ′(c) (x2 − x1) for some c ∈ (x1, x2).
Obviously, f ′(c) > 0 if and only if f (x1) < f (x2). Likewise,
f ′(c) ≥ 0 if and only if f (x1) ≤ f (x2). This proves
statements (iii), (iv), and the “if” part of statements (i), (ii).
The “only if” part of statements (i) and (ii) follows from the
Comparison Theorem. Finally, statement (v) follows from
statements (i) and (ii).



Generalized Mean Value Theorem

Theorem If function f and g are continuous on [a, b] and
differentiable on (a, b), then there exists c ∈ (a, b) such that

g ′(c)
(

f (b)− f (a)
)

= f ′(c)
(

g(b)− g(a)
)

.

Proof: For any x ∈ [a, b], let

h(x) = f (x)
(

g(b)− g(a)
)

− g(x)
(

f (b)− f (a)
)

.

We observe that the function h is continuous on [a, b] and
differentiable on (a, b). Further,

h(a) = f (a)
(

g(b)− g(a)
)

− g(a)
(

f (b)− f (a)
)

= f (a) g(b)− g(a) f (b),

h(b) = f (b)
(

g(b)− g(a)
)

− g(b)
(

f (b)− f (a)
)

= −f (b) g(a) + g(b) f (a).

Hence h(a) = h(b). By Rolle’s Theorem, h′(c) = 0 for some
c ∈ (a, b). It remains to notice that

h′(c) = f ′(c)
(

g(b)− g(a)
)

− g ′(c)
(

f (b)− f (a)
)

.



Taylor’s formula

Theorem Let n ∈ N and I ⊂ R be an open interval. If a
function f : I → R is n+ 1 times differentiable on I , then for
each pair of points x , x0 ∈ I there is a point c between x and
x0 such that

f (x) = f (x0) +

n
∑

k=1

f (k)(x0)

k!
(x − x0)

k +
f (n+1)(c)

(n + 1)!
(x − x0)

n+1.

Remark. The function

P f ,x0
n

(x) = f (x0) +
f ′(x0)

1!
(x − x0) + · · ·+

f (n)(x0)

n!
(x − x0)

n

is a polynomial of degree at most n. It is called the Taylor
polynomial of order n generated by f centered at x0. One
can check that P f ,x0

n
(x0) = f (x0) and (P f ,x0

n
)(k)(x0) = f (k)(x0)

for 1 ≤ k ≤ n.



Proof of the theorem: Let us fix x ∈ I and define functions

F (t) =
(x−t)n+1

(n + 1)!
and G (t) = f (x)−f (t)−

n
∑

k=1

f (k)(t)

k!
(x−t)k .

The function F is infinitely differentiable on R. The function
G is defined and differentiable on I . By the Generalized Mean
Value Theorem, for every x0 ∈ I , x0 6= x , there exists a point
c between x0 and x such that

G ′(c)
(

F (x)− F (x0)
)

= F ′(c)
(

G (x)− G (x0)
)

.

Note that the latter follows both in the case x0 < x and in
the case x < x0. Clearly, F (x) = G (x) = 0. Further,

d

dt

(

f (k)(t)
k!

(x − t)k
)

= f (k+1)(t)
k!

(x − t)k − f (k)(t)
(k−1)!

(x − t)k−1.

Summing up over k from 1 to n, we obtain that

G ′(t) = − f (n+1)(t)
n!

(x−t)n. Finally, F ′(t) = − (x−t)n

n!
so that

G ′(t)/F ′(t) = f (n+1)(t) for t 6= x . It follows that
G (x0) = f (n+1)(c) F (x0), which implies Taylor’s formula.


