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Advanced Calculus I

Lecture 17:
Applications of the mean value theorem.

l’Hôpital’s rule.



Fermat’s Theorem If a function f is differentiable at a point
c of local extremum (maximum or minimum), then f ′(c) = 0.

Rolle’s Theorem If a function f is continuous on a closed
interval [a, b], differentiable on the open interval (a, b), and
if f (a) = f (b), then f ′(c) = 0 for some c ∈ (a, b).

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c ∈ (a, b)
such that f (b)− f (a) = f ′(c) (b − a).

Theorem Suppose that a function f is continuous on [a, b]
and differentiable on (a, b). Then the following hold.

(i) f is increasing on [a, b] if and only if f ′ ≥ 0 on (a, b).
(ii) f is decreasing on [a, b] if and only if f ′ ≤ 0 on (a, b).
(iii) If f ′ > 0 on (a, b), then f is strictly increasing on [a, b].
(iv) If f ′ < 0 on (a, b), then f is strictly decreasing on [a, b].
(v) f is constant on [a, b] if and only if f ′ = 0 on (a, b).



Examples

• ex > x + 1 for all x 6= 0.

Consider a function f (x) = ex − x − 1, x ∈ R. This function
is differentiable on R and f ′(x) = ex − 1 for all x ∈ R. We
observe that the derivative f ′ is strictly increasing. Since
f ′(0) = 0, we have f ′(x) < 0 for x < 0 and f ′(x) > 0 for
x > 0. It follows that the function f is strictly decreasing on
(−∞, 0] and strictly increasing on [0,∞). As a consequence,
f (x) > f (0) = 0 for all x 6= 0. Thus ex > x + 1 for x 6= 0.

• log x < x − 1 for all x > 0, x 6= 1.

By the above, ex−1 > (x − 1) + 1 = x for all x 6= 1. Since
the natural logarithm is strictly increasing on (0,∞), it
follows that log ex−1 > log x for x > 0, x 6= 1. Equivalently,
log x < x − 1 for x > 0, x 6= 1.



Examples

• (1− x)α > 1−αx for all x ∈ (0, 1) and α > 1.

Let us fix an arbitrary α > 1 and consider a function

f (x) = (1− x)α − 1 + αx , x ∈ [0, 1).

This function is differentiable on [0, 1) and
f ′(x) = − α(1− x)α−1 + α for all x ∈ [0, 1). Since
α− 1 > 0, we obtain that (1− x)α−1 < 1 for x ∈ (0, 1).
Hence f ′(x) > 0 for x ∈ (0, 1). It follows that the function
f is strictly increasing on [0, 1). As a consequence,
f (x) > f (0) = 0 for all x ∈ (0, 1). Equivalently,
(1− x)α > 1− αx for x ∈ (0, 1).



Examples

• (1− x)α < 1− αx +
α(α− 1)

2
x2 for all

x ∈ (0, 1) and α > 2.

Let us fix an arbitrary α > 2 and consider a function

f (x) = (1− x)α − 1 + αx − 1
2
α(α− 1)x2, x ∈ [0, 1).

This function is infinitely differentiable on [0, 1),
f ′(x) = − α(1− x)α−1 + α− α(α− 1)x , and
f ′′(x) = α(α− 1)(1− x)α−2 − α(α− 1) for all x ∈ [0, 1).
Since α− 2 > 0, we obtain that f ′′(x) < 0 for x ∈ (0, 1).
It follows that the derivative f ′ is strictly decreasing on [0, 1).
As a consequence, f ′(x) < f ′(0) = 0 for all x ∈ (0, 1).
Now it follows that the function f is also strictly decreasing on
[0, 1). Consequently, f (x) < f (0) = 0 for all x ∈ (0, 1).
The required inequality follows.



Examples

• The function f (x) = (1 + x)1/x is strictly
decreasing on (0,∞).

Consider a function g(x) = log f (x), x > 0. For every
x > 0, we have g(x) = log(1 + x)/x . Therefore g is
differentiable on (0,∞) and g ′(x) =

(

x

1+x
− log(1 + x)

)

/x2

for all x > 0. Now we introduce another function
h(x) = x

1+x
− log(1 + x) = 1− 1

1+x
− log(1 + x), x ≥ 0.

Note that h(x) = x2g ′(x) for x > 0. The function h is
differentiable on [0,∞) and h′(x) = 1

(1+x)2
− 1

1+x
< 0 for all

x > 0. It follows that h is strictly decreasing on [0,∞). In
particular, h(x) < h(0) = 0 for x > 0. Then g ′(x) < 0 for
x > 0 as well. Therefore g is strictly decreasing on (0,∞).
Since the function f is the composition of g with the strictly
increasing function y (x) = ex , it is also strictly decreasing on
(0,∞).



Taylor’s formula

Theorem If a function f : I → R is n + 1 times
differentiable on an open interval I , then for any two points
x , x0 ∈ I there is a point c between x and x0 such that

f (x) = f (x0) +

n
∑

k=1

f (k)(x0)

k!
(x − x0)

k +
f (n+1)(c)

(n + 1)!
(x − x0)

n+1.

Remark. The function

P f ,x0
n

(x) = f (x0) +
f ′(x0)

1!
(x − x0) + · · ·+

f (n)(x0)

n!
(x − x0)

n

is a polynomial of degree at most n. It is called the Taylor
polynomial of order n generated by f centered at x0.
Taylor’s formula provides information on the remainder term
r f ,x0
n

= f − P f ,x0
n

. In many cases this information allows to
estimate |r f ,x0

n
(x)| or to prove an inequality of the form

f (x) < P f ,x0
n

(x) or f (x) > P f ,x0
n

(x).



l’Hôpital’s Rule

l’Hôpital’s Rule helps to compute limits of quotients in those
cases where limit theorems do not apply (because of an
indeterminacy of the form 0/0 or ∞/∞).

Theorem Let a be either a real number or −∞ or +∞.
Let I be an open interval such that either a ∈ I or a is an
endpoint of I . Suppose that functions f and g are
differentiable on I and that g(x), g ′(x) 6= 0 for x ∈ I \ {a}.
Suppose further that

lim
x→a

x∈I

f (x) = lim
x→a

x∈I

g(x) = A,

where A = 0 or ∞. If the limit lim
x→a

x∈I

f ′(x)/g ′(x) exists (finite

or infinite), then

lim
x→a

x∈I

f (x)

g(x)
= lim

x→a

x∈I

f ′(x)

g ′(x)
.



Remark. In fact, the theorem includes several similar rules
corresponding to various kinds of limits (limx→a+, limx→a−,
limx→a for a ∈ R, limx→+∞, limx→−∞) and the two types of
indeterminacy (0/0 and ∞/∞).

Proof in the case limx→a+ 0/0: We extend f and g to
I ∪ {a} by letting f (a) = g(a) = 0. By hypothesis, f and g

are continuous on I ∪ {a} and differentiable on I . By
Generalized Mean Value Theorem, for any x ∈ I there exists
cx ∈ (a, x) such that

g ′(cx)
(

f (x)− f (a)
)

= f ′(cx)
(

g(x)− g(a)
)

.

That is, g ′(cx)f (x) = f ′(cx)g(x). Since g(cx), g
′(cx) 6= 0,

we obtain f (x)/g(x) = f ′(cx)/g
′(cx). Since cx ∈ (a, x), we

have cx → a+ as x → a+. It follows that

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(cx)

g ′(cx)
= lim

c→a+

f ′(c)

g ′(c)
.



Examples

• lim
x→0

1− cos x

x2
.

The functions f (x) = 1− cos x and g(x) = x2 are infinitely
differentiable on R. We have lim

x→0
f (x) = f (0) = 0 and

lim
x→0

g(x) = g(0) = 0.

Further, f ′(x) = sin x and g ′(x) = 2x . We obtain
lim
x→0

f ′(x) = f ′(0) = 0 and lim
x→0

g ′(x) = g ′(0) = 0.

Even further, f ′′(x) = cos x and g ′′(x) = 2. We obtain
lim
x→0

f ′′(x) = f ′′(0) = 1 and lim
x→0

g ′′(x) = g ′′(0) = 2.

It follows that lim
x→0

f ′′(x)/g ′′(x) = 1/2.

By l’Hôpital’s Rule, lim
x→0

f ′(x)/g ′(x) = 1/2. Applying

l’Hôpital’s Rule once again, we obtain lim
x→0

f (x)/g(x) = 1/2.



Examples

• lim
x→0+

xα log x and lim
x→+∞

xα log x , where α 6= 0.

We have lim
x→0+

log x = −∞ and lim
x→+∞

log x = +∞.

Besides, lim
x→0+

x−α = 0 if α < 0 and +∞ if α > 0.

Since 1/x → 0+ as x → +∞, we obtain that
lim

x→+∞

x−α = lim
x→0+

xα.

It follows that lim
x→0+

xα log x = −∞ if α < 0 and

lim
x→+∞

xα log x = +∞ if α > 0.



Examples

• lim
x→0+

xα log x and lim
x→+∞

xα log x , where α 6= 0.

Further, we have xα log x = f (x)/g(x), where the functions
f (x) = log x and g(x) = x−α are infinitely differentiable on
(0,∞). For any x > 0 we obtain f ′(x) = 1/x and
g ′(x) = − αx−α−1. Hence f ′(x)/g ′(x) = − α−1xα for all
x > 0. Therefore in the case α < 0 we have
lim

x→0+
f ′(x)/g ′(x) = +∞ and lim

x→+∞

f ′(x)/g ′(x) = 0.

In the case α > 0, the two limits are interchanged.

By l’Hôpital’s Rule, lim
x→0+

f (x)/g(x) = 0 if α > 0 and

lim
x→+∞

f (x)/g(x) = 0 if α < 0.


