MATH 409 Advanced Calculus I

Lecture 17: Applications of the mean value theorem. I'Hôpital's rule. **Fermat's Theorem** If a function f is differentiable at a point c of local extremum (maximum or minimum), then f'(c) = 0.

Rolle's Theorem If a function f is continuous on a closed interval [a, b], differentiable on the open interval (a, b), and if f(a) = f(b), then f'(c) = 0 for some $c \in (a, b)$.

Mean Value Theorem If a function f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c) (b - a).

Theorem Suppose that a function f is continuous on [a, b] and differentiable on (a, b). Then the following hold.

(i) f is increasing on [a, b] if and only if $f' \ge 0$ on (a, b). (ii) f is decreasing on [a, b] if and only if $f' \le 0$ on (a, b). (iii) If f' > 0 on (a, b), then f is strictly increasing on [a, b]. (iv) If f' < 0 on (a, b), then f is strictly decreasing on [a, b]. (v) f is constant on [a, b] if and only if f' = 0 on (a, b).

•
$$e^x > x+1$$
 for all $x \neq 0$.

Consider a function $f(x) = e^x - x - 1$, $x \in \mathbb{R}$. This function is differentiable on \mathbb{R} and $f'(x) = e^x - 1$ for all $x \in \mathbb{R}$. We observe that the derivative f' is strictly increasing. Since f'(0) = 0, we have f'(x) < 0 for x < 0 and f'(x) > 0 for x > 0. It follows that the function f is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, \infty)$. As a consequence, f(x) > f(0) = 0 for all $x \neq 0$. Thus $e^x > x + 1$ for $x \neq 0$.

•
$$\log x < x - 1$$
 for all $x > 0$, $x \neq 1$.

By the above, $e^{x-1} > (x-1) + 1 = x$ for all $x \neq 1$. Since the natural logarithm is strictly increasing on $(0, \infty)$, it follows that $\log e^{x-1} > \log x$ for x > 0, $x \neq 1$. Equivalently, $\log x < x - 1$ for x > 0, $x \neq 1$.

•
$$(1-x)^{\alpha} > 1-\alpha x$$
 for all $x \in (0,1)$ and $\alpha > 1$.

Let us fix an arbitrary $\alpha > 1$ and consider a function

$$f(x) = (1-x)^{\alpha} - 1 + \alpha x, \ x \in [0,1).$$

This function is differentiable on [0,1) and $f'(x) = -\alpha(1-x)^{\alpha-1} + \alpha$ for all $x \in [0,1)$. Since $\alpha - 1 > 0$, we obtain that $(1-x)^{\alpha-1} < 1$ for $x \in (0,1)$. Hence f'(x) > 0 for $x \in (0,1)$. It follows that the function f is strictly increasing on [0,1). As a consequence, f(x) > f(0) = 0 for all $x \in (0,1)$. Equivalently, $(1-x)^{\alpha} > 1 - \alpha x$ for $x \in (0,1)$.

•
$$(1-x)^{\alpha} < 1 - \alpha x + \frac{\alpha(\alpha-1)}{2}x^2$$
 for all $x \in (0,1)$ and $\alpha > 2$.

Let us fix an arbitrary $\alpha>2$ and consider a function

$$f(x) = (1-x)^{\alpha} - 1 + \alpha x - \frac{1}{2}\alpha(\alpha - 1)x^2, \ x \in [0, 1).$$

This function is infinitely differentiable on [0,1), $f'(x) = -\alpha(1-x)^{\alpha-1} + \alpha - \alpha(\alpha-1)x$, and $f''(x) = \alpha(\alpha-1)(1-x)^{\alpha-2} - \alpha(\alpha-1)$ for all $x \in [0,1)$. Since $\alpha - 2 > 0$, we obtain that f''(x) < 0 for $x \in (0,1)$. It follows that the derivative f' is strictly decreasing on [0,1). As a consequence, f'(x) < f'(0) = 0 for all $x \in (0,1)$. Now it follows that the function f is also strictly decreasing on [0,1). Consequently, f(x) < f(0) = 0 for all $x \in (0,1)$. The required inequality follows.

• The function $f(x) = (1+x)^{1/x}$ is strictly decreasing on $(0,\infty)$.

Consider a function $g(x) = \log f(x)$, x > 0. For every x > 0, we have $g(x) = \log(1+x)/x$. Therefore g is differentiable on $(0,\infty)$ and $g'(x) = \left(\frac{x}{1+x} - \log(1+x)\right)/x^2$ for all x > 0. Now we introduce another function $h(x) = \frac{x}{1+x} - \log(1+x) = 1 - \frac{1}{1+x} - \log(1+x), x \ge 0.$ Note that $h(x) = x^2 g'(x)$ for x > 0. The function h is differentiable on $[0,\infty)$ and $h'(x) = \frac{1}{(1+x)^2} - \frac{1}{1+x} < 0$ for all x > 0. It follows that h is strictly decreasing on $[0, \infty)$. In particular, h(x) < h(0) = 0 for x > 0. Then g'(x) < 0 for x > 0 as well. Therefore g is strictly decreasing on $(0, \infty)$. Since the function f is the composition of g with the strictly increasing function $y(x) = e^x$, it is also strictly decreasing on $(0,\infty).$

Taylor's formula

Theorem If a function $f : I \to \mathbb{R}$ is n+1 times differentiable on an open interval *I*, then for any two points $x, x_0 \in I$ there is a point *c* between *x* and x_0 such that

$$f(x) = f(x_0) + \sum_{k=1}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(c)}{(n+1)!} (x - x_0)^{n+1}.$$

Remark. The function

$$P_n^{f,x_0}(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n$$

is a polynomial of degree at most *n*. It is called the **Taylor polynomial** of order *n* generated by *f* centered at x_0 . Taylor's formula provides information on the remainder term $r_n^{f,x_0} = f - P_n^{f,x_0}$. In many cases this information allows to estimate $|r_n^{f,x_0}(x)|$ or to prove an inequality of the form $f(x) < P_n^{f,x_0}(x)$ or $f(x) > P_n^{f,x_0}(x)$.

l'Hôpital's Rule

l'Hôpital's Rule helps to compute limits of quotients in those cases where limit theorems do not apply (because of an indeterminacy of the form 0/0 or ∞/∞).

Theorem Let *a* be either a real number or $-\infty$ or $+\infty$. Let *I* be an open interval such that either $a \in I$ or *a* is an endpoint of *I*. Suppose that functions *f* and *g* are differentiable on *I* and that $g(x), g'(x) \neq 0$ for $x \in I \setminus \{a\}$. Suppose further that

$$\lim_{\substack{x \to a \\ x \in I}} f(x) = \lim_{\substack{x \to a \\ x \in I}} g(x) = A,$$

where A = 0 or ∞ . If the limit $\lim_{\substack{x \to a \\ x \in I}} f'(x)/g'(x)$ exists (finite

or infinite), then

$$\lim_{\substack{x \to a \\ x \in I}} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ x \in I}} \frac{f'(x)}{g'(x)}.$$

Remark. In fact, the theorem includes several similar rules corresponding to various kinds of limits $(\lim_{x\to a^+}, \lim_{x\to a^-}, \lim_{x\to a}$ for $a \in \mathbb{R}$, $\lim_{x\to +\infty}, \lim_{x\to -\infty})$ and the two types of indeterminacy $(0/0 \text{ and } \infty/\infty)$.

Proof in the case $\lim_{x\to a^+} 0/0$: We extend f and g to $I \cup \{a\}$ by letting f(a) = g(a) = 0. By hypothesis, f and g are continuous on $I \cup \{a\}$ and differentiable on I. By Generalized Mean Value Theorem, for any $x \in I$ there exists $c_x \in (a, x)$ such that

$$g'(c_x)(f(x)-f(a))=f'(c_x)(g(x)-g(a)).$$

That is, $g'(c_x)f(x) = f'(c_x)g(x)$. Since $g(c_x), g'(c_x) \neq 0$, we obtain $f(x)/g(x) = f'(c_x)/g'(c_x)$. Since $c_x \in (a, x)$, we have $c_x \to a+$ as $x \to a+$. It follows that

$$\lim_{x\to a+}\frac{f(x)}{g(x)}=\lim_{x\to a+}\frac{f'(c_x)}{g'(c_x)}=\lim_{c\to a+}\frac{f'(c)}{g'(c)}.$$

•
$$\lim_{x\to 0}\frac{1-\cos x}{x^2}.$$

The functions $f(x) = 1 - \cos x$ and $g(x) = x^2$ are infinitely differentiable on \mathbb{R} . We have $\lim_{x\to 0} f(x) = f(0) = 0$ and $\lim_{x\to 0} g(x) = g(0) = 0$.

Further, $f'(x) = \sin x$ and g'(x) = 2x. We obtain $\lim_{x \to 0} f'(x) = f'(0) = 0$ and $\lim_{x \to 0} g'(x) = g'(0) = 0$.

Even further, $f''(x) = \cos x$ and g''(x) = 2. We obtain $\lim_{x\to 0} f''(x) = f''(0) = 1$ and $\lim_{x\to 0} g''(x) = g''(0) = 2$. It follows that $\lim_{x\to 0} f''(x)/g''(x) = 1/2$.

By l'Hôpital's Rule, $\lim_{x\to 0} f'(x)/g'(x) = 1/2$. Applying l'Hôpital's Rule once again, we obtain $\lim_{x\to 0} f(x)/g(x) = 1/2$.

• $\lim_{x \to 0+} x^{\alpha} \log x$ and $\lim_{x \to +\infty} x^{\alpha} \log x$, where $\alpha \neq 0$.

We have $\lim_{x\to 0+} \log x = -\infty$ and $\lim_{x\to +\infty} \log x = +\infty$. Besides, $\lim_{x\to 0+} x^{-\alpha} = 0$ if $\alpha < 0$ and $+\infty$ if $\alpha > 0$. Since $1/x \to 0+$ as $x \to +\infty$, we obtain that $\lim_{x\to +\infty} x^{-\alpha} = \lim_{x\to 0+} x^{\alpha}$.

It follows that $\lim_{x\to 0+} x^{\alpha} \log x = -\infty$ if $\alpha < 0$ and $\lim_{x\to +\infty} x^{\alpha} \log x = +\infty$ if $\alpha > 0$.

• $\lim_{x \to 0+} x^{\alpha} \log x$ and $\lim_{x \to +\infty} x^{\alpha} \log x$, where $\alpha \neq 0$.

Further, we have $x^{\alpha} \log x = f(x)/g(x)$, where the functions $f(x) = \log x$ and $g(x) = x^{-\alpha}$ are infinitely differentiable on $(0, \infty)$. For any x > 0 we obtain f'(x) = 1/x and $g'(x) = -\alpha x^{-\alpha-1}$. Hence $f'(x)/g'(x) = -\alpha^{-1}x^{\alpha}$ for all x > 0. Therefore in the case $\alpha < 0$ we have $\lim_{x \to 0^+} f'(x)/g'(x) = +\infty$ and $\lim_{x \to +\infty} f'(x)/g'(x) = 0$. In the case $\alpha > 0$, the two limits are interchanged.

By l'Hôpital's Rule, $\lim_{x\to 0+} f(x)/g(x) = 0$ if $\alpha > 0$ and $\lim_{x\to +\infty} f(x)/g(x) = 0$ if $\alpha < 0$.