MATH 409
 Advanced Calculus I

Lecture 17:
 Applications of the mean value theorem. l'Hôpital's rule.

Fermat's Theorem If a function f is differentiable at a point c of local extremum (maximum or minimum), then $f^{\prime}(c)=0$.

Rolle's Theorem If a function f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b), and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Mean Value Theorem If a function f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Theorem Suppose that a function f is continuous on $[a, b]$ and differentiable on (a, b). Then the following hold.
(i) f is increasing on $[a, b]$ if and only if $f^{\prime} \geq 0$ on (a, b).
(ii) f is decreasing on $[a, b]$ if and only if $f^{\prime} \leq 0$ on (a, b).
(iii) If $f^{\prime}>0$ on (a, b), then f is strictly increasing on $[a, b]$.
(iv) If $f^{\prime}<0$ on (a, b), then f is strictly decreasing on $[a, b]$.
(v) f is constant on $[a, b]$ if and only if $f^{\prime}=0$ on (a, b).

Examples

- $e^{x}>x+1$ for all $x \neq 0$.

Consider a function $f(x)=e^{x}-x-1, x \in \mathbb{R}$. This function is differentiable on \mathbb{R} and $f^{\prime}(x)=e^{x}-1$ for all $x \in \mathbb{R}$. We observe that the derivative f^{\prime} is strictly increasing. Since $f^{\prime}(0)=0$, we have $f^{\prime}(x)<0$ for $x<0$ and $f^{\prime}(x)>0$ for $x>0$. It follows that the function f is strictly decreasing on $(-\infty, 0]$ and strictly increasing on $[0, \infty)$. As a consequence, $f(x)>f(0)=0$ for all $x \neq 0$. Thus $e^{x}>x+1$ for $x \neq 0$.

- $\log x<x-1$ for all $x>0, x \neq 1$.

By the above, $e^{x-1}>(x-1)+1=x$ for all $x \neq 1$. Since the natural logarithm is strictly increasing on $(0, \infty)$, it follows that $\log e^{x-1}>\log x$ for $x>0, x \neq 1$. Equivalently, $\log x<x-1$ for $x>0, x \neq 1$.

Examples

- $(1-x)^{\alpha}>1-\alpha x$ for all $x \in(0,1)$ and $\alpha>1$.

Let us fix an arbitrary $\alpha>1$ and consider a function

$$
f(x)=(1-x)^{\alpha}-1+\alpha x, \quad x \in[0,1) .
$$

This function is differentiable on $[0,1)$ and $f^{\prime}(x)=-\alpha(1-x)^{\alpha-1}+\alpha$ for all $x \in[0,1)$. Since $\alpha-1>0$, we obtain that $(1-x)^{\alpha-1}<1$ for $x \in(0,1)$. Hence $f^{\prime}(x)>0$ for $x \in(0,1)$. It follows that the function f is strictly increasing on $[0,1)$. As a consequence, $f(x)>f(0)=0$ for all $x \in(0,1)$. Equivalently, $(1-x)^{\alpha}>1-\alpha x$ for $x \in(0,1)$.

Examples

$$
\text { - }(1-x)^{\alpha}<1-\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2} \quad \text { for all }
$$

$$
x \in(0,1) \text { and } \alpha>2
$$

Let us fix an arbitrary $\alpha>2$ and consider a function

$$
f(x)=(1-x)^{\alpha}-1+\alpha x-\frac{1}{2} \alpha(\alpha-1) x^{2}, \quad x \in[0,1) .
$$

This function is infinitely differentiable on $[0,1)$, $f^{\prime}(x)=-\alpha(1-x)^{\alpha-1}+\alpha-\alpha(\alpha-1) x$, and $f^{\prime \prime}(x)=\alpha(\alpha-1)(1-x)^{\alpha-2}-\alpha(\alpha-1)$ for all $x \in[0,1)$.
Since $\alpha-2>0$, we obtain that $f^{\prime \prime}(x)<0$ for $x \in(0,1)$. It follows that the derivative f^{\prime} is strictly decreasing on $[0,1)$. As a consequence, $f^{\prime}(x)<f^{\prime}(0)=0$ for all $x \in(0,1)$. Now it follows that the function f is also strictly decreasing on $[0,1)$. Consequently, $f(x)<f(0)=0$ for all $x \in(0,1)$. The required inequality follows.

Examples

- The function $f(x)=(1+x)^{1 / x}$ is strictly decreasing on $(0, \infty)$.

Consider a function $g(x)=\log f(x), x>0$. For every $x>0$, we have $g(x)=\log (1+x) / x$. Therefore g is differentiable on $(0, \infty)$ and $g^{\prime}(x)=\left(\frac{x}{1+x}-\log (1+x)\right) / x^{2}$ for all $x>0$. Now we introduce another function $h(x)=\frac{x}{1+x}-\log (1+x)=1-\frac{1}{1+x}-\log (1+x), \quad x \geq 0$. Note that $h(x)=x^{2} g^{\prime}(x)$ for $x>0$. The function h is differentiable on $[0, \infty)$ and $h^{\prime}(x)=\frac{1}{(1+x)^{2}}-\frac{1}{1+x}<0$ for all $x>0$. It follows that h is strictly decreasing on $[0, \infty)$. In particular, $h(x)<h(0)=0$ for $x>0$. Then $g^{\prime}(x)<0$ for $x>0$ as well. Therefore g is strictly decreasing on $(0, \infty)$. Since the function f is the composition of g with the strictly increasing function $y(x)=e^{x}$, it is also strictly decreasing on $(0, \infty)$.

Taylor's formula

Theorem If a function $f: I \rightarrow \mathbb{R}$ is $n+1$ times differentiable on an open interval I, then for any two points $x, x_{0} \in I$ there is a point c between x and x_{0} such that

$$
f(x)=f\left(x_{0}\right)+\sum_{k=1}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1}
$$

Remark. The function

$$
P_{n}^{f, x_{0}}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is a polynomial of degree at most n. It is called the Taylor polynomial of order n generated by f centered at x_{0}.
Taylor's formula provides information on the remainder term $r_{n}^{f, x_{0}}=f-P_{n}^{f, x_{0}}$. In many cases this information allows to estimate $\left|r_{n}^{f, x_{0}}(x)\right|$ or to prove an inequality of the form $f(x)<P_{n}^{f, x_{0}}(x)$ or $f(x)>P_{n}^{f, x_{0}}(x)$.

l'Hôpital's Rule

I'Hôpital's Rule helps to compute limits of quotients in those cases where limit theorems do not apply (because of an indeterminacy of the form $0 / 0$ or ∞ / ∞).

Theorem Let a be either a real number or $-\infty$ or $+\infty$. Let I be an open interval such that either $a \in I$ or a is an endpoint of l. Suppose that functions f and g are differentiable on I and that $g(x), g^{\prime}(x) \neq 0$ for $x \in I \backslash\{a\}$. Suppose further that

$$
\lim _{\substack{x \rightarrow a \\ x \in I}} f(x)=\lim _{\substack{x \rightarrow i \\ x \in I}} g(x)=A,
$$

where $A=0$ or ∞. If the limit $\underset{\substack{x \rightarrow a \\ x \in I}}{ } f^{\prime}(x) / g^{\prime}(x)$ exists (finite or infinite), then

$$
\lim _{\substack{x \rightarrow \infty \\ x \in I}} \frac{f(x)}{g(x)}=\lim _{\substack{x \rightarrow-\infty \\ x \in I}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Remark. In fact, the theorem includes several similar rules corresponding to various kinds of limits $\left(\lim _{x \rightarrow a+}, \lim _{x \rightarrow a-}\right.$, $\lim _{x \rightarrow a}$ for $\left.a \in \mathbb{R}, \lim _{x \rightarrow+\infty}, \lim _{x \rightarrow-\infty}\right)$ and the two types of indeterminacy (0/0 and ∞ / ∞).

Proof in the case $\lim _{x \rightarrow a+} 0 / 0$: We extend f and g to $I \cup\{a\}$ by letting $f(a)=g(a)=0$. By hypothesis, f and g are continuous on $I \cup\{a\}$ and differentiable on I. By
Generalized Mean Value Theorem, for any $x \in I$ there exists $c_{x} \in(a, x)$ such that

$$
g^{\prime}\left(c_{x}\right)(f(x)-f(a))=f^{\prime}\left(c_{x}\right)(g(x)-g(a))
$$

That is, $g^{\prime}\left(c_{x}\right) f(x)=f^{\prime}\left(c_{x}\right) g(x)$. Since $g\left(c_{x}\right), g^{\prime}\left(c_{x}\right) \neq 0$, we obtain $f(x) / g(x)=f^{\prime}\left(c_{x}\right) / g^{\prime}\left(c_{x}\right)$. Since $c_{x} \in(a, x)$, we have $c_{x} \rightarrow a+$ as $x \rightarrow a+$. It follows that

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a+} \frac{f^{\prime}\left(c_{x}\right)}{g^{\prime}\left(c_{x}\right)}=\lim _{c \rightarrow a+} \frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Examples

- $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.

The functions $f(x)=1-\cos x$ and $g(x)=x^{2}$ are infinitely differentiable on \mathbb{R}. We have $\lim _{x \rightarrow 0} f(x)=f(0)=0$ and $\lim _{x \rightarrow 0} g(x)=g(0)=0$.
Further, $f^{\prime}(x)=\sin x$ and $g^{\prime}(x)=2 x$. We obtain $\lim _{x \rightarrow 0} f^{\prime}(x)=f^{\prime}(0)=0$ and $\lim _{x \rightarrow 0} g^{\prime}(x)=g^{\prime}(0)=0$.
Even further, $f^{\prime \prime}(x)=\cos x$ and $g^{\prime \prime}(x)=2$. We obtain $\lim _{x \rightarrow 0} f^{\prime \prime}(x)=f^{\prime \prime}(0)=1$ and $\lim _{x \rightarrow 0} g^{\prime \prime}(x)=g^{\prime \prime}(0)=2$.
It follows that $\lim _{x \rightarrow 0} f^{\prime \prime}(x) / g^{\prime \prime}(x)=1 / 2$.
By l'Hôpital's Rule, $\lim _{x \rightarrow 0} f^{\prime}(x) / g^{\prime}(x)=1 / 2$. Applying I'Hôpital's Rule once again, we obtain $\lim _{x \rightarrow 0} f(x) / g(x)=1 / 2$.

Examples

- $\lim _{x \rightarrow 0+} x^{\alpha} \log x$ and $\lim _{x \rightarrow+\infty} x^{\alpha} \log x$, where $\alpha \neq 0$.

We have $\lim _{x \rightarrow 0+} \log x=-\infty$ and $\lim _{x \rightarrow+\infty} \log x=+\infty$.
Besides, $\lim _{x \rightarrow 0+} x^{-\alpha}=0$ if $\alpha<0$ and $+\infty$ if $\alpha>0$.
Since $1 / x \rightarrow 0+$ as $x \rightarrow+\infty$, we obtain that $\lim _{x \rightarrow+\infty} x^{-\alpha}=\lim _{x \rightarrow 0+} x^{\alpha}$.
It follows that $\lim _{x \rightarrow 0+} x^{\alpha} \log x=-\infty$ if $\alpha<0$ and $\lim _{x \rightarrow+\infty} x^{\alpha} \log x=+\infty$ if $\alpha>0$.

Examples

- $\lim _{x \rightarrow 0+} x^{\alpha} \log x$ and $\lim _{x \rightarrow+\infty} x^{\alpha} \log x$, where $\alpha \neq 0$.

Further, we have $x^{\alpha} \log x=f(x) / g(x)$, where the functions $f(x)=\log x$ and $g(x)=x^{-\alpha}$ are infinitely differentiable on $(0, \infty)$. For any $x>0$ we obtain $f^{\prime}(x)=1 / x$ and $g^{\prime}(x)=-\alpha x^{-\alpha-1}$. Hence $f^{\prime}(x) / g^{\prime}(x)=-\alpha^{-1} x^{\alpha}$ for all $x>0$. Therefore in the case $\alpha<0$ we have $\lim _{x \rightarrow 0+} f^{\prime}(x) / g^{\prime}(x)=+\infty$ and $\lim _{x \rightarrow+\infty} f^{\prime}(x) / g^{\prime}(x)=0$.
In the case $\alpha>0$, the two limits are interchanged.
By l'Hôpital's Rule, $\lim _{x \rightarrow 0+} f(x) / g(x)=0$ if $\alpha>0$ and $\lim _{x \rightarrow+\infty} f(x) / g(x)=0$ if $\alpha<0$.

