MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

Darboux sums

Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of an interval [a, b], where $x_0 = a < x_1 < \dots < x_n = b$. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Definition. The **upper Darboux sum** (or the **upper Riemann sum**) of the function f over the partition P is the number n

$$U(f,P) = \sum_{j=1} M_j(f) \Delta_j,$$

where $\Delta_j = x_j - x_{j-1}$ and $M_j(f) = \sup f([x_{j-1}, x_j])$ for j = 1, 2, ..., n. Likewise, the **lower Darboux sum** (or the **lower Riemann sum**) of f over P is the number

$$L(f,P) = \sum_{j=1}^{n} m_j(f) \Delta_j,$$

where $m_j(f) = \inf f([x_{j-1}, x_j])$ for j = 1, 2, ..., n.

Upper and lower integrals

Suppose $f : [a, b] \to \mathbb{R}$ is a bounded function. *Definition.* The **upper integral** of f on [a, b], denoted $\int_{a}^{b} f(x) dx$ or $(U) \int_{a}^{b} f(x) dx$, is the number inf $\{U(f, P) \mid P \text{ is a partition of } [a, b] \}$. Similarly, the **lower integral** of f on [a, b], denoted $\int_{a}^{b} f(x) dx$ or $(L) \int_{a}^{b} f(x) dx$, is the number $\sup \{L(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Remark. For any partitions *P* and *Q* of the interval [a, b], $L(f, P) \le (L) \int_{a}^{b} f(x) dx \le (U) \int_{a}^{b} f(x) dx \le U(f, Q).$

Integrability

Definition. A bounded function $f : [a, b] \to \mathbb{R}$ is called **integrable** (or **Riemann integrable**) on the interval [a, b] if the upper and lower integrals of f on [a, b] coincide. The common value is called the **integral** of f on [a, b] (or over [a, b]).

Theorem A bounded function $f : [a, b] \to \mathbb{R}$ is integrable on [a, b] if and only if for every $\varepsilon > 0$ there is a partition P_{ε} of [a, b] such that $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$.

Theorem If a function is continuous on the interval [a, b], then it is integrable on [a, b].

Riemann sums

Definition. A **Riemann sum** of a function $f : [a, b] \to \mathbb{R}$ with respect to a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b]generated by samples $t_j \in [x_{j-1}, x_j]$ is a sum

$$S(f, P, t_j) = \sum_{j=1}^n f(t_j) (x_j - x_{j-1}).$$

Remark. Note that the function f need not be bounded. If f is bounded, then $L(f, P) \leq S(f, P, t_j) \leq U(f, P)$ for any choice of samples t_j .

Definition. The Riemann sums $S(f, P, t_j)$ converge to a limit I(f) as the norm $||P|| \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||P|| < \delta$ implies $|S(f, P, t_j) - I(f)| < \varepsilon$ for any partition P and choice of samples t_j .

Theorem The Riemann sums $\mathcal{S}(f, P, t_j)$ converge to a limit I(f) as $||P|| \to 0$ if and only if the function f is integrable on [a, b] and $I(f) = \int_a^b f(x) dx$.

Darboux sums and a Riemann sum

Proof of the theorem ("only if"): Assume that the Riemann sums $\mathcal{S}(f, P, t_i)$ converge to a limit I(f) as $||P|| \to 0$. Given $\varepsilon > 0$, we choose $\delta > 0$ so that for every partition P with $||P|| < \delta$, we have $|S(f, P, t_i) - I(f)| < \varepsilon$ for any choice of samples t_i . Let \tilde{t}_i be a different set of samples for the same partition *P*. Then $|\mathcal{S}(f, P, \tilde{t}_i) - I(f)| < \varepsilon$. We can choose the samples t_i , \tilde{t}_i so that $f(t_i)$ is arbitrarily close to $\sup f([x_{i-1}, x_i])$ while $f(\tilde{t}_i)$ is arbitrarily close to inf $f([x_{i-1}, x_i])$. That way $S(f, P, t_i)$ gets arbitrarily close to U(f, P) while $\mathcal{S}(f, P, \tilde{t}_i)$ gets arbitrarily close to L(f, P). Hence it follows from the above inequalities that $|U(f, P) - I(f)| \le \varepsilon$ and $|L(f, P) - I(f)| \le \varepsilon$. As a consequence, $U(f, P) - L(f, P) \le 2\varepsilon$. In particular, the function f is bounded. We conclude that f is integrable. Let $I = \int_{a}^{b} f(x) dx$. The number I lies between L(f, P) and U(f, P). The inequalities $U(f, P) - L(f, P) < 2\varepsilon$ and $|U(f, P) - I(f)| \le \varepsilon$ imply that $|I - I(f)| \le 3\varepsilon$. As ε can be arbitrarily small, I = I(f).

Integration as a linear operation

Theorem 1 If functions f, g are integrable on an interval [a, b], then the sum f + g is also integrable on [a, b] and

$$\int_a^b (f(x)+g(x))\,dx=\int_a^b f(x)\,dx+\int_a^b g(x)\,dx.$$

Theorem 2 If a function f is integrable on [a, b], then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on [a, b] and

$$\int_a^b \alpha f(x) \, dx = \alpha \int_a^b f(x) \, dx.$$

Proof of Theorems 1 and 2: Let I(f) denote the integral of fand I(g) denote the integral of g over [a, b]. The key observation is that the Riemann sums depend linearly on a function. Namely, $S(f + g, P, t_j) = S(f, P, t_j) + S(g, P, t_j)$ and $S(\alpha f, P, t_j) = \alpha \cdot S(f, P, t_j)$ for any partition P of [a, b]and choice of samples t_j . It follows that

$$\begin{aligned} |\mathcal{S}(f+g,P,t_j)-I(f)-I(g)| \\ &\leq |\mathcal{S}(f,P,t_j)-I(f)|+|\mathcal{S}(g,P,t_j)-I(g)|, \\ |\mathcal{S}(\alpha f,P,t_j)-\alpha I(f)| &= |\alpha| \cdot |\mathcal{S}(f,P,t_j)-I(f)|. \end{aligned}$$

As $||P|| \rightarrow 0$, the Riemann sums $S(f, P, t_j)$ and $S(g, P, t_j)$ get arbirarily close to I(f) and I(g), respectively. Then $S(f + g, P, t_j)$ will be getting arbitrarily close to I(f) + I(g)while $S(\alpha f, P, t_j)$ will be getting arbitrarily close to $\alpha I(f)$. Thus I(f) + I(g) is the integral of f + g and $\alpha I(f)$ is the integral of αf over [a, b]. **Theorem** If a function f is integrable on [a, b], then it is integrable on each subinterval $[c, d] \subset [a, b]$.

Proof: Since *f* is integrable on the interval [a, b], for any $\varepsilon > 0$ there is a partition P_{ε} of [a, b] such that $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$. Given a subinterval $[c, d] \subset [a, b]$, let $P'_{\varepsilon} = P_{\varepsilon} \cup \{c, d\}$ and $Q_{\varepsilon} = P'_{\varepsilon} \cap [c, d]$. Then P'_{ε} is a partition of [a, b] that refines P_{ε} . Hence

$$U(f, P_{\varepsilon}') - L(f, P_{\varepsilon}') \leq U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon.$$

Since Q_{ε} is a partition of [c, d] contained in P'_{ε} , it follows that $U(f, Q_{\varepsilon}) - L(f, Q_{\varepsilon}) \leq U(f, P'_{\varepsilon}) - L(f, P'_{\varepsilon}) < \varepsilon.$

We conclude that f is integrable on [c, d].

Theorem If a function f is integrable on [a, b] then for any $c \in (a, b)$,

$$\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx.$$

Proof: Since f is integrable on the interval [a, b], it is also integrable on subintervals [a, c] and [c, b]. Let P be a partition of [a, c] and $\{t_j\}$ be some samples for that partition. Further, let Q be a partition of [c, b] and $\{\tau_i\}$ be some samples for that partition. Then $P \cup Q$ is a partition of [a, b] and $\{t_j\} \cup \{\tau_i\}$ are samples for it. The key observation is that

 $\mathcal{S}(f, P \cup Q, \{t_j\} \cup \{\tau_i\}) = \mathcal{S}(f, P, t_j) + \mathcal{S}(f, Q, \tau_i).$

If $||P|| \to 0$ and $||Q|| \to 0$, then $||P \cup Q|| = \max(||P||, ||Q||)$ tends to 0 as well. Therefore the Riemann sums in the latter equality will converge to the integrals $\int_a^b f(x) dx$, $\int_a^c f(x) dx$, and $\int_c^b f(x) dx$, respectively.

Theorem If a function f is integrable on [a, b]and $f([a, b]) \subset [A, B]$, then for each continuous function $g : [A, B] \to \mathbb{R}$ the composition $g \circ f$ is also integrable on [a, b].

Corollary If functions f and g are integrable on [a, b], then so is fg.

Proof: We have $(f + g)^2 = f^2 + g^2 + 2fg$. Since f and g are integrable on [a, b], so is f + g. Since $h(x) = x^2$ is a continuous function on \mathbb{R} , the compositions $h \circ f = f^2$, $h \circ g = g^2$, and $h \circ (f + g) = (f + g)^2$ are integrable on [a, b]. Then $fg = \frac{1}{2}(f + g)^2 - \frac{1}{2}f^2 - \frac{1}{2}g^2$ is integrable on [a, b] as a linear combination of integrable functions.

Comparison Theorem for integrals

Theorem If functions f, g are integrable on [a, b]and $f(x) \le g(x)$ for all $x \in [a, b]$, then $\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx.$

Proof: Since $f \leq g$ on the interval [a, b], it follows that $\mathcal{S}(f, P, t_j) \leq \mathcal{S}(g, P, t_j)$ for any partition P of [a, b] and choice of samples t_j . As $||P|| \rightarrow 0$, the sum $\mathcal{S}(f, P, t_j)$ gets arbitrarily close to the integral of f while $\mathcal{S}(g, P, t_j)$ gets arbitrarily close to the integral of g. The theorem follows.

Corollary 1 If f is integrable on [a, b] and $f(x) \ge 0$ for $x \in [a, b]$, then $\int_a^b f(x) dx \ge 0$.

Corollary 2 If f is integrable on [a, b] and $m \le f(x) \le M$ for $x \in [a, b]$, then $m(b-a) \le \int_a^b f(x) dx \le M(b-a).$

Corollary 3 If f is integrable on [a, b], then the function |f| is also integrable on [a, b] and

$$\left|\int_a^b f(x)\,dx\right|\leq \int_a^b |f(x)|\,dx.$$

Proof: The function |f| is the composition of f with a continuous function g(x) = |x|. Therefore |f| is integrable on [a, b]. Since $-|f(x)| \le f(x) \le |f(x)|$ for $x \in [a, b]$, the Comparison Theorem for integrals implies that

$$-\int_a^b |f(x)|\,dx \le \int_a^b f(x)\,dx \le \int_a^b |f(x)|\,dx$$

Integral with variable limit

Suppose $f : [a, b] \to \mathbb{R}$ is an integrable function. For any $x \in [a, b]$ let $F(x) = \int_{a}^{x} f(t) dt$ (we assume that F(a) = 0).

Theorem The function F is well defined and continuous on [a, b].

Proof: Since the function f is integrable on [a, b], it is also integrable on each subinterval of [a, b]. Hence the function F is well defined on [a, b]. Besides, f is bounded: $|f(t)| \leq M$ for some M > 0 and all $t \in [a, b]$. For any $x, y \in [a, b]$, $x \leq y$, we have $\int_a^y f(t) dt = \int_a^x f(t) dt + \int_x^y f(t) dt$. It follows that

$$|F(y)-F(x)|=\left|\int_x^y f(t)\,dt\right|\,\leq\int_x^y |f(t)|\,dt\leq M\,|y-x|.$$

Thus F is a Lipschitz function on [a, b], which implies that F is uniformly continuous on [a, b].

Sets of measure zero

Definition. A subset E of the real line \mathbb{R} is said to have **measure zero** if for any $\varepsilon > 0$ the set E can be covered by countably many open intervals J_1, J_2, \ldots such that $\sum_{n=1}^{\infty} |J_n| < \varepsilon$.

Examples. • Any countable set has measure zero.

Indeed, suppose *E* is a countable set and let $x_1, x_2, ...$ be a list of all elements of *E*. Given $\varepsilon > 0$, let

$$J_n = \left(x_n - \frac{\varepsilon}{2^{n+1}}, x_n + \frac{\varepsilon}{2^{n+1}}\right), \quad n = 1, 2, \dots$$

Then $E \subset J_1 \cup J_2 \cup \ldots$ and $|J_n| = \varepsilon/2^n$ for all $n \in \mathbb{N}$ so that $\sum_{n=1}^{\infty} |J_n| = \varepsilon$.

• A nondegenerate interval [a, b] is not a set of measure zero.

• There exist sets of measure zero that are of the same cardinality as $\mathbb{R}.$

Lebesgue's criterion for Riemann integrability

Definition. Suppose P(x) is a property depending on $x \in S$, where $S \subset \mathbb{R}$. We say that P(x) holds for **almost all** $x \in S$ (or **almost everywhere** on S) if the set $\{x \in S \mid P(x) \text{ does not hold }\}$ has measure zero.

Theorem A function $f : [a, b] \to \mathbb{R}$ is Riemann integrable on the interval [a, b] if and only if f is bounded on [a, b] and continuous almost everywhere on [a, b].