MATH 409
 Advanced Calculus I

Lecture 20:
The fundamental theorem of calculus. Change of the variable in an integral.

Integral with a variable limit

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is an integrable function.
For any $x \in[a, b]$ let $F(x)=\int_{a}^{x} f(t) d t$
(we assume that $F(a)=0$).
Theorem 1 The function F is well defined and continuous on $[a, b]$.

Theorem 2 If f is continuous at a point $x \in[a, b]$, then F is differentiable at x and $F^{\prime}(x)=f(x)$.

Proof of Theorem 2: For any $x, y \in[a, b], x<y$, we have

$$
\int_{a}^{y} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{y} f(t) d t .
$$

Then

$$
F(y)-F(x)-f(x)(y-x)=\int_{x}^{y} f(t) d t-\int_{x}^{y} f(x) d t
$$

so that

$$
\begin{aligned}
& |F(y)-F(x)-f(x)(y-x)|=\left|\int_{x}^{y}(f(t)-f(x)) d t\right| \\
& \quad \leq \int_{x}^{y}|f(t)-f(x)| d t \leq \sup _{t \in[x, y]}|f(t)-f(x)|(y-x) .
\end{aligned}
$$

Finally, $\left|\frac{F(y)-F(x)}{y-x}-f(x)\right| \leq \sup _{t \in[x, y]}|f(t)-f(x)|$.
If the function f is right continuous at x, i.e., $f(y) \rightarrow f(x)$ as $y \rightarrow x+$, then $\sup _{t \in[x, y]}|f(t)-f(x)| \rightarrow 0$ as $y \rightarrow x+$. It follows that $f(x)$ is the right-hand derivative of F at x. Likewise, one can prove that left continuity of f at x implies that $f(x)$ is the left-hand derivative of F at x.

Fundamental theorem of calculus (part I)

Theorem If a function f is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is continuously differentiable on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Proof: Since f is continuous, it is also integrable on $[a, b]$. As already proved earlier, the integrability of f implies that the function F is well defined and continuous on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ whenever f is continuous at the point x.
Therefore the continuity of f on $[a, b]$ implies that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$. In particular, F is continuously differentiable on $[a, b]$.

Fundamental theorem of calculus (part II)

Theorem If a function F is differentiable on $[a, b]$ and the derivative F^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{x} F^{\prime}(t) d t=F(x)-F(a) \text { for all } x \in[a, b] .
$$

Proof: The case $x=a$ is trivial. Since F^{\prime} is integrable on $[a, b]$, it is also integrable on any subinterval $[a, x]$, $x \in(a, b)$. Therefore it is no loss to assume that $x=b$. Consider an arbitrary partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$. Let us choose samples $t_{j} \in\left[x_{j-1}, x_{j}\right]$ for the Riemann sum $\mathcal{S}\left(F^{\prime}, P, t_{j}\right)$ so that $F\left(x_{j}\right)-F\left(x_{j-1}\right)=F^{\prime}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$ (this is possible due to the Mean Value Theorem). Then $\mathcal{S}\left(F^{\prime}, P, t_{j}\right)=\sum_{j=1}^{n} F^{\prime}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)=\sum_{j=1}^{n}\left(F\left(x_{j}\right)-F\left(x_{j-1}\right)\right)$ $=F\left(x_{n}\right)-F\left(x_{0}\right)=F(b)-F(a)$. Since the sums $\mathcal{S}\left(F^{\prime}, P, t_{j}\right)$ converge to $\int_{a}^{b} F^{\prime}(t) d t$ as $\|P\| \rightarrow 0$, the theorem follows.

Indefinite integral

Definition. Given a function $f:[a, b] \rightarrow \mathbb{R}$, a function $F:[a, b] \rightarrow \mathbb{R}$ is called the indefinite integral (or antiderivative, or primitive integral, or the primitive) of f if $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$. Notation for $F: \int f(x) d x$.
If the function f is continuous on $[a, b]$, then the function $F(x)=\int_{a}^{x} f(t) d t, x \in[a, b]$, is an indefinite integral of f due to the Fundamental Theorem of Calculus.

Suppose F is an antiderivative of f. If G is another antiderivative of f, then $G^{\prime}=F^{\prime}$ on $[a, b]$. Hence $(G-F)^{\prime}=G^{\prime}-F^{\prime}=0$ on $[a, b]$. It follows that $G-F$ is a constant function. Conversely, for any constant C the function $G(x)=F(x)+C$ is also an antiderivative of f. Thus the general indefinite integral of f is given by $\int f(x) d x=F(x)+C$, where C is an arbitrary constant.

Examples

- $\int x^{\alpha} d x=\frac{x^{\alpha+1}}{\alpha+1}+C$ on $(0, \infty)$ for $\alpha \neq-1$.

Indeed, $\left(\frac{x^{\alpha+1}}{\alpha+1}\right)^{\prime}=\frac{1}{\alpha+1}\left(x^{\alpha+1}\right)^{\prime}=\frac{1}{\alpha+1}(\alpha+1) x^{\alpha}=x^{\alpha}$.

- $\int \frac{1}{x} d x=\log x+C$ on $(0, \infty)$.

Indeed, $(\log x)^{\prime}=1 / x$ on $(0, \infty)$.

- $\int \sin x d x=-\cos x+C$.
- $\int \cos x d x=\sin x+C$.

Integration by parts

Theorem Suppose that functions f, g are differentiable on $[a, b]$ with the derivatives f^{\prime}, g^{\prime} integrable on $[a, b]$. Then

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Proof: By the Product Rule, $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ on $[a, b]$. Since the functions $f, g, f^{\prime}, g^{\prime}$ are integrable on $[a, b]$, so are the products $f^{\prime} g$ and $f g^{\prime}$. Then $(f g)^{\prime}$ is integrable on $[a, b]$ as well. By the Fundamental Theorem of Calculus,

$$
\begin{aligned}
f(b) g(b)-f(a) g(a) & =\int_{a}^{b}(f g)^{\prime}(x) d x \\
& =\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
\end{aligned}
$$

Corollary Suppose that functions f, g are continuously differentiable on $[a, b]$. Then

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x \text { on }[a, b] .
$$

To simplify notation, it is convenient to use the Leibniz differential $d f$ of a function f defined by $d f(x)=f^{\prime}(x) d x$ $=\frac{d f}{d x} d x$. Another convenient notation is $\left.f(x)\right|_{x=a} ^{b}$ or simply $\left.f(x)\right|_{a} ^{b}$, which denotes the difference $f(b)-f(a)$.

Now the formula of integration by parts can be rewritten as

$$
\int_{a}^{b} f(x) d g(x)=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) d f(x)
$$

for definite integrals and as

$$
\int f d g=f g-\int g d f
$$

for indefinite integrals.

Examples

- $\int \log x d x=x \log x-x+C$ on $(0, \infty)$.

Integrating by parts, we obtain

$$
\begin{aligned}
& \int \log x d x=x \log x-\int x d(\log x)=x \log x \\
& \quad-\int x(\log x)^{\prime} d x=x \log x-\int 1 d x=x \log x-x+C \\
& -\int_{0}^{\pi / 2} x \sin x d x=1
\end{aligned}
$$

Integrating by parts, we obtain

$$
\int_{0}^{\pi / 2} x \sin x d x=-\left.x \cos x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2}(-\cos x) d x=\left.\sin x\right|_{0} ^{\pi / 2}=1 .
$$

Change of the variable in an integral

Theorem If ϕ is continuously differentiable on a closed, nondegenerate interval $[a, b]$ and f is continuous on $\phi([a, b])$, then

$$
\int_{\phi(a)}^{\phi(b)} f(t) d t=\int_{a}^{b} f(\phi(x)) \phi^{\prime}(x) d x=\int_{a}^{b} f(\phi(x)) d \phi(x) .
$$

Remarks. - It is possible that $\phi(a) \geq \phi(b)$. To make sense of the integral in this case, we set

$$
\int_{c}^{d} f(t) d t=-\int_{d}^{c} f(t) d t
$$

if $c>d$. Also, we set the integral to be 0 if $c=d$.

- $t=\phi(x)$ is a proper change of the variable only if the function ϕ is strictly monotone. However the theorem holds even without this assumption.

Proof of the theorem: Let us define two functions:

$$
F(u)=\int_{\phi(a)}^{u} f(t) d t, \quad u \in \phi([a, b])
$$

and

$$
G(x)=\int_{a}^{x} f(\phi(s)) \phi^{\prime}(s) d s, \quad x \in[a, b] .
$$

It follows from the Fundamental Theorem of Calculus that $F^{\prime}(u)=f(u)$ and $G^{\prime}(x)=f(\phi(x)) \phi^{\prime}(x)$. By the Chain Rule,

$$
(F \circ \phi)^{\prime}(x)=F^{\prime}(\phi(x)) \phi^{\prime}(x)=f(\phi(x)) \phi^{\prime}(x)=G^{\prime}(x)
$$

Therefore $(F(\phi(x))-G(x))^{\prime}=0$ for all $x \in[a, b]$. It follows that the function $F(\phi(x))-G(x)$ is constant on $[a, b]$. In particular, $F(\phi(b))-G(b)=F(\phi(a))-G(a)=0-0=0$.

