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Advanced Calculus I

Lecture 20:
The fundamental theorem of calculus.

Change of the variable in an integral.



Integral with a variable limit

Suppose f : [a, b] → R is an integrable function.

For any x ∈ [a, b] let F (x) =

∫

x

a

f (t) dt

(we assume that F (a) = 0).

Theorem 1 The function F is well defined and

continuous on [a, b].

Theorem 2 If f is continuous at a point x ∈ [a, b],
then F is differentiable at x and F ′(x) = f (x).



Proof of Theorem 2: For any x , y ∈ [a, b], x < y , we have
∫ y

a

f (t) dt =

∫ x

a

f (t) dt +

∫ y

x

f (t) dt.

Then

F (y )− F (x)− f (x) (y − x) =

∫ y

x

f (t) dt −

∫ y

x

f (x) dt

so that

|F (y )− F (x)− f (x) (y − x)| =

∣

∣

∣

∣

∫ y

x

(f (t)− f (x)) dt

∣

∣

∣

∣

≤

∫ y

x

|f (t)− f (x)| dt ≤ sup
t∈[x ,y ]

|f (t)− f (x)| (y − x).

Finally,

∣

∣

∣

∣

F (y )− F (x)

y − x
− f (x)

∣

∣

∣

∣

≤ sup
t∈[x ,y ]

|f (t)− f (x)|.

If the function f is right continuous at x , i.e., f (y ) → f (x)
as y → x+, then supt∈[x ,y ] |f (t)− f (x)| → 0 as y → x+.
It follows that f (x) is the right-hand derivative of F at x .
Likewise, one can prove that left continuity of f at x implies
that f (x) is the left-hand derivative of F at x .



Fundamental theorem of calculus (part I)

Theorem If a function f is continuous on an

interval [a, b], then the function

F (x) =

∫

x

a

f (t) dt, x ∈ [a, b],

is continuously differentiable on [a, b]. Moreover,

F ′(x) = f (x) for all x ∈ [a, b].

Proof: Since f is continuous, it is also integrable on [a, b].
As already proved earlier, the integrability of f implies that the
function F is well defined and continuous on [a, b]. Moreover,
F ′(x) = f (x) whenever f is continuous at the point x .
Therefore the continuity of f on [a, b] implies that
F ′(x) = f (x) for all x ∈ [a, b]. In particular, F is
continuously differentiable on [a, b].



Fundamental theorem of calculus (part II)

Theorem If a function F is differentiable on [a, b]

and the derivative F ′ is integrable on [a, b], then
∫

x

a

F ′(t) dt = F (x)− F (a) for all x ∈ [a, b].

Proof: The case x = a is trivial. Since F ′ is integrable on
[a, b], it is also integrable on any subinterval [a, x ],
x ∈ (a, b). Therefore it is no loss to assume that x = b.

Consider an arbitrary partition P = {x0, x1, . . . , xn} of [a, b].
Let us choose samples tj ∈ [xj−1, xj ] for the Riemann sum
S(F ′,P, tj) so that F (xj)− F (xj−1) = F ′(tj) (xj − xj−1)
(this is possible due to the Mean Value Theorem). Then
S(F ′,P, tj) =

∑n

j=1 F
′(tj) (xj−xj−1) =

∑n

j=1(F (xj)−F (xj−1))

= F (xn)− F (x0) = F (b)− F (a). Since the sums S(F ′,P, tj)

converge to
∫ b

a
F ′(t) dt as ‖P‖ → 0, the theorem follows.



Indefinite integral

Definition. Given a function f : [a, b] → R, a function
F : [a, b] → R is called the indefinite integral (or
antiderivative, or primitive integral, or the primitive) of f

if F ′(x) = f (x) for all x ∈ [a, b]. Notation for F :

∫

f (x) dx .

If the function f is continuous on [a, b], then the function
F (x) =

∫ x

a
f (t) dt, x ∈ [a, b], is an indefinite integral of f due

to the Fundamental Theorem of Calculus.

Suppose F is an antiderivative of f . If G is another
antiderivative of f , then G ′ = F ′ on [a, b]. Hence
(G − F )′ = G ′ − F ′ = 0 on [a, b]. It follows that G − F is a
constant function. Conversely, for any constant C the
function G (x) = F (x) + C is also an antiderivative of f .
Thus the general indefinite integral of f is given by
∫

f (x) dx = F (x) + C , where C is an arbitrary constant.



Examples

•

∫

xα dx =
xα+1

α+ 1
+ C on (0,∞) for α 6= −1.

Indeed,

(

xα+1

α + 1

)′

=
1

α + 1
(xα+1)′ =

1

α + 1
(α + 1)xα = xα.

•

∫

1

x
dx = log x + C on (0,∞).

Indeed, (log x)′ = 1/x on (0,∞).

•

∫

sin x dx = − cos x + C .

•

∫

cos x dx = sin x + C .



Integration by parts

Theorem Suppose that functions f , g are differentiable on
[a, b] with the derivatives f ′, g ′ integrable on [a, b]. Then
∫ b

a

f (x)g ′(x) dx = f (b)g(b)− f (a)g(a)−

∫ b

a

f ′(x)g(x) dx .

Proof: By the Product Rule, (fg)′ = f ′g + fg ′ on [a, b].
Since the functions f , g , f ′, g ′ are integrable on [a, b], so are
the products f ′g and fg ′. Then (fg)′ is integrable on [a, b] as
well. By the Fundamental Theorem of Calculus,

f (b)g(b)− f (a)g(a) =

∫ b

a

(fg)′(x) dx

=

∫ b

a

f ′(x)g(x) dx+

∫ b

a

f (x)g ′(x) dx .



Corollary Suppose that functions f , g are continuously
differentiable on [a, b]. Then

∫

f (x)g ′(x) dx = f (x)g(x)−

∫

f ′(x)g(x) dx on [a, b].

To simplify notation, it is convenient to use the Leibniz
differential df of a function f defined by df (x) = f ′(x) dx
= df

dx
dx . Another convenient notation is f (x)|bx=a or simply

f (x)|ba , which denotes the difference f (b)− f (a).

Now the formula of integration by parts can be rewritten as
∫ b

a

f (x) dg(x) = f (x)g(x)

∣

∣

∣

∣

b

a

−

∫ b

a

g(x) df (x)

for definite integrals and as
∫

f dg = fg −

∫

g df

for indefinite integrals.



Examples

•

∫

log x dx = x log x − x + C on (0,∞).

Integrating by parts, we obtain
∫

log x dx = x log x −

∫

x d(log x) = x log x

−

∫

x(log x)′ dx = x log x −

∫

1 dx = x log x − x + C .

•

∫ π/2

0

x sin x dx = 1.

Integrating by parts, we obtain
∫ π/2

0

x sin x dx = − x cos x |
π/2
0 −

∫ π/2

0

(− cos x) dx = sin x |
π/2
0 = 1.



Change of the variable in an integral

Theorem If φ is continuously differentiable on a closed,
nondegenerate interval [a, b] and f is continuous on
φ([a, b]), then
∫ φ(b)

φ(a)

f (t) dt =

∫ b

a

f (φ(x))φ′(x) dx =

∫ b

a

f (φ(x)) dφ(x).

Remarks. • It is possible that φ(a) ≥ φ(b). To make sense
of the integral in this case, we set

∫ d

c

f (t) dt = −

∫ c

d

f (t) dt

if c > d . Also, we set the integral to be 0 if c = d .

• t = φ(x) is a proper change of the variable only if the
function φ is strictly monotone. However the theorem holds
even without this assumption.



Proof of the theorem: Let us define two functions:

F (u) =

∫ u

φ(a)

f (t) dt, u ∈ φ([a, b]);

and

G (x) =

∫ x

a

f (φ(s))φ′(s) ds, x ∈ [a, b].

It follows from the Fundamental Theorem of Calculus that
F ′(u) = f (u) and G ′(x) = f (φ(x))φ′(x). By the Chain Rule,

(F ◦ φ)′(x) = F ′(φ(x))φ′(x) = f (φ(x))φ′(x) = G ′(x).

Therefore (F (φ(x))− G (x))′ = 0 for all x ∈ [a, b]. It follows
that the function F (φ(x))− G (x) is constant on [a, b]. In
particular, F (φ(b))− G (b) = F (φ(a))− G (a) = 0− 0 = 0.


