MATH 409
 Advanced Calculus I

Lecture 22:
 Improper Riemann integrals.

Improper Riemann integral

If a function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$, then the function $F(x)=\int_{a}^{x} f(t) d t$ is well defined and continuous on $[a, b]$. In particular, $F(c) \rightarrow F(b)$ as $c \rightarrow b-$, i.e.,

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b+} \int_{a}^{c} f(x) d x
$$

Now suppose that f is defined on the semi-open interval $J=[a, b)$ and is integrable on any closed interval $[c, d] \subset J$ (such a function is called locally integrable on J). Then all integrals in the right-hand side are well defined and the limit might exist even if f is not integrable on $[a, b]$.
If this is the case, then f is called improperly integrable on J and the limit is called the (improper) integral of f on $[a, b)$.
Similarly, one defines improper integrability on the semi-open interval $(a, b]$.

Suppose a function f is locally integrable on a semi-open interval $J=[a, b)$ or $(a, b]$. Then there are two possible obstructions for f to be integrable on $[a, b]$: (\mathbf{i}) the function f is not bounded on J, and (ii) the interval J is not bounded.

Examples.

- Function $f(x)=1 / \sqrt{x}$ is improperly integrable on (0,1$]$.

$$
\begin{aligned}
\int_{0}^{1} \frac{1}{\sqrt{x}} d x & =\lim _{c \rightarrow 0+} \int_{c}^{1} \frac{1}{\sqrt{x}} d x=\left.\lim _{c \rightarrow 0+} 2 \sqrt{x}\right|_{x=c} ^{1} \\
& =\lim _{c \rightarrow 0+}(2-2 \sqrt{c})=2
\end{aligned}
$$

- Function $g(x)=x^{-2}$ is improperly integrable on $[1, \infty)$.

$$
\begin{aligned}
\int_{1}^{\infty} x^{-2} d x & =\lim _{c \rightarrow+\infty} \int_{1}^{c} x^{-2} d x=\lim _{c \rightarrow+\infty}-\left.x^{-1}\right|_{x=1} ^{c} \\
& =\lim _{c \rightarrow+\infty}\left(1-c^{-1}\right)=1 .
\end{aligned}
$$

Properties of improper integrals

Since an improper Riemann integral is a limit of proper integrals, the properties of improper integrals are analogous to those of proper integrals (and derived using limit theorems).

Theorem Let $f:[a, b) \rightarrow \mathbb{R}$ be a function integrable on any closed interval $\left[a_{1}, b_{1}\right] \subset[a, b)$. Given $c \in(a, b)$, the function f is improperly integrable on $[c, b$) if and only if it is improperly integrable on $[a, b)$. In the case of integrability,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Sketch of the proof: For any $d \in(c, b)$ we have the following equality involving proper Riemann integrals:

$$
\int_{a}^{d} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{d} f(x) d x
$$

The theorem is proved by taking the limit as $d \rightarrow b-$.

Theorem Suppose that a function $f:(a, b) \rightarrow \mathbb{R}$ is integrable on any closed interval $[c, d] \subset(a, b)$. Given a number $I \in \mathbb{R}$, the following conditions are equivalent:
(i) for some $c \in(a, b)$ the function f is improperly integrable on ($a, c]$ and $\left[c, b\right.$), and $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=I$;
(ii) for every $c \in(a, b)$ the function f is improperly integrable on ($a, c]$ and $\left[c, b\right.$), and $\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x=1$;
(iii) for every $c \in(a, b)$ the function f is improperly integrable on $(a, c]$ and $\int_{a}^{c} f(x) d x \rightarrow I$ as $c \rightarrow b-$;
(iv) for every $c \in(a, b)$ the function f is improperly integrable on $[c, b)$ and $\int_{c}^{b} f(x) d x \rightarrow I$ as $c \rightarrow a+$.

Improper integral: two singular points

Definition. A function $f:(a, b) \rightarrow \mathbb{R}$ is called improperly integrable on the open interval (a, b) if for some (and then for any) $c \in(a, b)$ it is improperly integrable on semi-open intervals $(a, c]$ and $[c, b)$. The integral of f is defined by

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

In view of the previous theorem, the integral does not depend on c. It can also be computed as a repeated limit:
$\int_{a}^{b} f(x) d x=\lim _{d \rightarrow b-}\left(\lim _{c \rightarrow a+} \int_{c}^{d} f(x) d x\right)=\lim _{c \rightarrow a+}\left(\lim _{d \rightarrow b-} \int_{c}^{d} f(x) d x\right)$.
Finally, the integral can be computed as a double limit (i.e., the limit of a function of two variables):

$$
\int_{a}^{b} f(x) d x=\lim _{\substack{c \rightarrow a+\\ d \rightarrow b-}} \int_{c}^{d} f(x) d x
$$

More properties of improper integrals

- If a function f is integrable on a closed interval $[a, b]$ or improperly integrable on one of the semi-open intervals $[a, b)$ and $(a, b]$, then it is also improperly integrable on the open interval (a, b) with the same value of the integral.
- If functions f, g are improperly integrable on (a, b), then for any $\alpha, \beta \in \mathbb{R}$ the linear combination $\alpha f+\beta g$ is also improperly integrable on (a, b) and

$$
\int_{a}^{b}(\alpha f(x)+\beta g(x)) d x=\alpha \int_{a}^{b} f(x) d x+\beta \int_{a}^{b} g(x) d x .
$$

- Suppose a function $f:(a, b) \rightarrow \mathbb{R}$ is locally integrable and has an antiderivative F. Then f is improperly integrable on (a, b) if and only if $F(x)$ has finite limits as $x \rightarrow a+$ and as $x \rightarrow b-$, in which case

$$
\int_{a}^{b} f(x) d x=\lim _{x \rightarrow b-} F(x)-\lim _{x \rightarrow a+} F(x)
$$

Comparison Theorems for improper integrals

Theorem 1 Suppose that functions f, g are improperly integrable on (a, b). If $f(x) \leq g(x)$ for all $x \in(a, b)$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

Theorem 2 Suppose that functions f, g are locally integrable on (a, b). If the function g is improperly integrable on (a, b) and $0 \leq f(x) \leq g(x)$ for all $x \in(a, b)$, then f is also improperly integrable on (a, b).

Theorem 3 Suppose that functions f, g, h are locally integrable on (a, b). If the functions g, h are improperly integrable on (a, b) and $h(x) \leq f(x) \leq g(x)$ for all $x \in(a, b)$, then f is also improperly integrable on (a, b) and

$$
\int_{a}^{b} h(x) d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x .
$$

Examples

- Function $f(x)=x^{-2}$ is not improperly integrable on $(0, \infty)$.

Indeed, the antiderivative of the function f, which is $F(x)=-x^{-1}$, has a finite limit as $x \rightarrow+\infty$ but diverges to infinity as $x \rightarrow 0+$.

- Function $g(x)=x^{-2} \cos x$ is improperly integrable on $[1, \infty)$.
We have $-f(x) \leq g(x) \leq f(x)=x^{-2}$ for all $x \geq 1$. Since the function f is improperly integrable on $[1, \infty)$, it follows that $-f$ is also improperly integrable on $[1, \infty)$. By the Comparison Theorem for improper integrals, the function g is improperly integrable on $[1, \infty)$ as well.

Examples

- Function $f(x)=e^{-x}$ is improperly integrable on $[0, \infty)$.

Indeed, the antiderivative of the function f, which is $F(x)=-e^{-x}$, has a finite limit as $x \rightarrow+\infty$.

- Function $g(x)=e^{-x^{2}}$ is improperly integrable on $(-\infty, \infty)$.

We have $0 \leq g(x) \leq f(x)=e^{-x}$ for all $x \geq 1$. Since the function f is improperly integrable on $[0, \infty)$, it follows that g is improperly integrable on $[1, \infty)$. Since the function g is even, $g(-x)=g(x)$, it follows that g is also improperly integrable on $(-\infty,-1]$. Finally, g is properly integrable on $[-1,1]$.

Examples

- Function $f(x)=x^{-1} \sin x$ is improperly integrable on $[1, \infty)$.
To show improper integrability, we integrate by parts:

$$
\begin{aligned}
\int_{1}^{c} x^{-1} \sin x d x & =-\int_{1}^{c} x^{-1} d(\cos x) \\
& =-\left.x^{-1} \cos x\right|_{x=1} ^{c}+\int_{1}^{c} \cos x d\left(x^{-1}\right) \\
& =\cos 1-c^{-1} \cos c-\int_{1}^{c} x^{-2} \cos x d x
\end{aligned}
$$

Since the function $g(x)=x^{-2} \cos x$ is improperly integrable on $[1, \infty)$ and $c^{-1} \cos c \rightarrow 0$ as $c \rightarrow+\infty$, it follows that f is improperly integrable on $[1, \infty)$.

Absolute integrability

Definition. A function $f:(a, b) \rightarrow \mathbb{R}$ is called absolutely integrable on (a, b) if f is locally integrable on (a, b) and the function $|f|$ is improperly integrable on (a, b).

Theorem If a function f is absolutely integrable on (a, b), then it is also improperly integrable on (a, b) and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x .
$$

Proof: Since $|f|$ is improperly integrable on (a, b), so is $-|f|$. Clearly, $-|f(x)| \leq f(x) \leq|f(x)|$ for all $x \in(a, b)$. By the Comparison Theorems for improper integrals, the function f is improperly integrable on (a, b) and

$$
-\int_{a}^{b}|f(x)| d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x .
$$

Examples

- For any nonnegative function, the absolute integrability is equivalent to improper integrability.
In particular, the function $f_{1}(x)=x^{-2}$ is absolutely integrable on $[1, \infty)$ and is not on $(0, \infty)$. The function $f_{2}(x)=1 / \sqrt{x}$ is absolutely integrable on $(0,1)$. The function $f_{3}(x)=e^{-x^{2}}$ is absolutely integrable on $(-\infty, \infty)$.
- Function $f(x)=e^{-x^{2}} \sin x$ is absolutely integrable on $(-\infty, \infty)$.

Indeed, the function f is locally integrable on $(-\infty, \infty)$, a function $g(x)=e^{-x^{2}}$ is improperly integrable on $(-\infty, \infty)$, and $|f(x)| \leq g(x)$ for all $x \in \mathbb{R}$.

Counterexamples

- Function $f(x)=\left\{\begin{aligned} 1 & \text { if } x \in \mathbb{Q}, \\ -1 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{aligned}\right.$ is not absolutely integrable on $(0,1)$.
Indeed, the function f is not locally integrable on $(0,1)$. At the same time, the function $|f|$ is constant and hence (properly) integrable on (0,1).
- Function $f(x)=x^{-1} \sin x$ is not absolutely integrable on $[1, \infty)$.
For any $n \in \mathbb{N}, \quad \int_{n \pi}^{(n+1) \pi}|f(x)| d x \geq \int_{n \pi}^{(n+1) \pi} \frac{|\sin x|}{(n+1) \pi} d x$
$=\frac{1}{(n+1) \pi} \int_{0}^{\pi} \sin x d x=\frac{2}{(n+1) \pi} \geq \frac{1}{n \pi} \geq \frac{1}{\pi} \int_{n \pi}^{(n+1) \pi} \frac{d x}{x}$.
It remains to notice that $g(x)=1 / x$ is not improperly integrable on $[\pi, \infty)$.

