MATH 409
 Advanced Calculus I

Lecture 23:
 Convergence of infinite series.

Infinite series

Definition. Given a sequence $\left\{a_{n}\right\}$ of real numbers, an expression $a_{1}+a_{2}+\cdots+a_{n}+\ldots$ or $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series with terms a_{n}. The partial sum of order n of the series is defined by $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. If the sequence $\left\{s_{n}\right\}$ converges to a limit $s \in \mathbb{R}$, we say that the series converges to s or that s is the sum of the series and write $\sum_{n=1}^{\infty} a_{n}=s$. Otherwise the series diverges.

Theorem (Cauchy Criterion) An infinite series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $m \geq n \geq N$ implies $\left|a_{n}+a_{n+1}+\cdots+a_{m}\right|<\varepsilon$.
Proof: Let $\left\{s_{n}\right\}$ be the sequence of partial sums. Then $a_{n}+a_{n+1}+\cdots+a_{m}=s_{m}-s_{n-1}$. Consequently, the condition of the theorem is equivalent to the condition that $\left\{s_{n}\right\}$ be a Cauchy sequence. As we know, a sequence is convergent if and only if it is a Cauchy sequence.

Examples

- $\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}+\cdots=1$.

The partial sums s_{n} of this series satisfy $s_{n}=1-2^{-n}$ for all $n \in \mathbb{N}$. Thus $s_{n} \rightarrow 1$ as $n \rightarrow \infty$.

- $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\cdots=1$.

Since $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, the partial sums s_{n} of this series satisfy $s_{n}=1-\frac{1}{n+1}$. Thus $s_{n} \rightarrow 1$ as $n \rightarrow \infty$.

- $\sum_{n=1}^{\infty}(-1)^{n}=-1+1-1+\ldots$ diverges.

The partial sums s_{n} satisfy $s_{n}=-1$ for odd n and $s_{n}=0$ for even n. Hence the sequence $\left\{s_{n}\right\}$ has no limit.

Some properties of infinite series

Theorem (Divergence Test) If the terms of an infinite series do not converge to zero, then the series diverges.

Theorem If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, then

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

and

$$
\sum_{n=1}^{\infty}\left(r a_{n}\right)=r \sum_{n=1}^{\infty} a_{n}
$$

for any $r \in \mathbb{R}$.
Theorem If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, and $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then

$$
\sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}
$$

Example

- The geometric series $\sum_{n=0}^{\infty} x^{n}$ converges if and only if $|x|<1$, in which case its sum is $\frac{1}{1-x}$. In the case $|x| \geq 1$, the series fails the Divergence Test. For any $x \neq 1$, the partial sums s_{n} of the geometric series satisfy

$$
s_{n}=1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

In the case $|x|<1$, we obtain that $s_{n} \rightarrow 1 /(1-x)$ as $n \rightarrow \infty$.

Series with nonnegative terms

Suppose that a series $\sum_{n=1}^{\infty} a_{n}$ has nonnegative terms, $a_{n} \geq 0$ for all $n \in \mathbb{N}$. Then the sequence of partial sums $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ is increasing. It follows that $\left\{s_{n}\right\}$ converges to a finite limit if bounded and diverges to $+\infty$ otherwise. In the latter case, we write $\sum_{n=1}^{\infty} a_{n}=\infty$.

Theorem (Comparison Test) Suppose that $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$ and $a_{n} \leq b_{n}$ for large n. Then convergence of the series $\sum_{n=1}^{\infty} b_{n}$ implies convergence of $\sum_{n=1}^{\infty} a_{n}$ while $\sum_{n=1}^{\infty} a_{n}=\infty$ implies $\sum_{n=1}^{\infty} b_{n}=\infty$.
Proof: Since changing a finite number of terms does not affect convergence of a series, it is no loss to assume that $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$. Then the partial sums $s_{n}=\sum_{k=1}^{n} a_{k}$ and $t_{n}=\sum_{k=1}^{n} b_{k}$ satisfy $s_{n} \leq t_{n}$ for all n. Consequently, if $s_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, then also $t_{n} \rightarrow+\infty$ as $n \rightarrow \infty$. Conversely, if $\left\{t_{n}\right\}$ is bounded, then so is $\left\{s_{n}\right\}$.

Integral test

Theorem Suppose that a function $f:[1, \infty) \rightarrow \mathbb{R}$ is positive and decreasing on $[1, \infty)$. Then
(i) a sequence $\left\{y_{n}\right\}$ is bounded, where

$$
y_{n}=f(1)+f(2)+\cdots+f(n)-\int_{1}^{n} f(x) d x, \quad n=1,2, \ldots
$$

(ii) the series $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the function f is improperly integrable on $[1, \infty)$.

To prove the theorem, we need the following lemma.
Lemma Any monotone function $g:[a, b] \rightarrow \mathbb{R}$ is integrable on $[a, b]$.
Idea of the proof: Any monotone function has only jump discontinuities. Further, any function has at most countably many jump discontinuities. Besides, a monotone function on $[a, b]$ is clearly bounded.

Proof of the theorem: The lemma implies that the function f is integrable on every closed interval $J=[a, b] \subset[1, \infty)$. Then for any partition P of the interval J the lower Darboux sum $L(f, P)$ and the upper Darboux sum $U(f, P)$ satisfy

$$
L(f, P) \leq \int_{a}^{b} f(x) d x \leq U(f, P) .
$$

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{k}\right\}$, where $x_{0}<x_{1}<\cdots<x_{k}$. Then $\sup f\left(\left[x_{j-1}, x_{j}\right]\right)=f\left(x_{j-1}\right)$ and $\inf f\left(\left[x_{j-1}, x_{j}\right]\right)=f\left(x_{j}\right)$ since f is decreasing. In the case $J=[1, n]$, where $n \in \mathbb{N}$, and $P=\{1,2, \ldots, n\}$ we obtain $L(f, P)=f(2)+f(3)+\ldots+f(n)$, $U(f, P)=f(1)+f(2)+\cdots+f(n-1)$. Then the above inequalities imply that $0<f(n) \leq y_{n} \leq f(1)$. Thus the sequence $\left\{y_{n}\right\}$ is bounded.
Since f is positive, the series $\sum_{n=1}^{\infty} f(n)$ either converges or else it diverges to $+\infty$. Likewise the improper integral $\int_{1}^{\infty} f(x) d x$ either converges or else it diverges to $+\infty$. Since the sequence $\left\{y_{n}\right\}$ is bounded, divergence of the series and the integral imply each other.

Examples

- $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ is convergent for any $p>1$ and divergent for any $p<1$.

For any $p \neq 1$ we have $\int x^{-p} d x=x^{1-p} /(1-p)+C$ on the interval $[1, \infty)$. The antiderivative converges to a finite limit at $+\infty$ in the case $p>1$ and diverges to $+\infty$ in the case $p<1$. Hence the function $f(x)=x^{-p}$ is improperly integrable on $[1, \infty)$ for $p>1$ but not for $p<1$. By the Integral Test, the series is convergent for $p>1$ and divergent for $0 \leq p<1$. If $p<0$ then the Integral Test does not apply since f is not decreasing. In this case, the series is divergent since the terms $1 / n^{p}$ do not converge to 0 as $n \rightarrow \infty$.

Examples

- The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Indeed, $\int_{1}^{n} x^{-1} d x=\log n \rightarrow+\infty$ as $n \rightarrow \infty$. By the Integral Test, the series is divergent. Moreover, the sequence $y_{n}=\sum_{k=1}^{n} k^{-1}-\log n$ is bounded (actually, it is decreasing and hence convergent).

- $\sum_{n=2}^{\infty} \frac{1}{n \log ^{2} n}$ converges.

The antiderivative of $f(x)=\left(x \log ^{2} x\right)^{-1}$ on $(1, \infty)$ is

$$
\int \frac{d x}{x \log ^{2} x}=\int \frac{d(\log x)}{\log ^{2} x}=-\frac{1}{\log x}+C .
$$

Since the antiderivative converges to a finite limit at $+\infty$, the function f is improperly integrable on $[2, \infty)$. By the Integral Test, the series converges.

Examples

- $\sum_{n=1}^{\infty} \frac{1}{1+n^{2}}$ converges.

Indeed, $0<1 /\left(1+n^{2}\right)<1 / n^{2}$ for all $n \in \mathbb{N}$. Since the series $\sum_{n=1}^{\infty} 1 / n^{2}$ is convergent, it remains to apply the Comparison Test. Alternatively, we can use the Integral Test. Indeed, $\int \frac{d x}{1+x^{2}}=\arctan x+C$ converges to a finite limit at $+\infty$ so that the function $f(x)=1 /\left(1+x^{2}\right)$ is improperly integrable on $[1, \infty)$.

- $\sum_{n=1}^{\infty} e^{-n^{2}}$ converges.

We have $0<e^{-n^{2}} \leq e^{-n}$ for all $n \in \mathbb{N}$. The geometric series $\sum_{n=1}^{\infty} e^{-n}$ is convergent since $0<e^{-1}<1$. By the Comparison Test, $\sum_{n=1}^{\infty} e^{-n^{2}}$ is convergent as well.

