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Lecture 23:
Convergence of infinite series.



Infinite series

Definition. Given a sequence {an} of real numbers, an
expression a1 + a2 + · · ·+ an + . . . or

∑
∞

n=1 an is called an
infinite series with terms an. The partial sum of order n of
the series is defined by sn = a1 + a2 + · · ·+ an. If the
sequence {sn} converges to a limit s ∈ R, we say that the
series converges to s or that s is the sum of the series and
write

∑
∞

n=1 an = s. Otherwise the series diverges.

Theorem (Cauchy Criterion) An infinite series
∑

∞

n=1 an
converges if and only if for every ε > 0 there exists N ∈ N

such that m ≥ n ≥ N implies |an + an+1 + · · ·+ am| < ε.

Proof: Let {sn} be the sequence of partial sums. Then
an + an+1 + · · ·+ am = sm − sn−1. Consequently, the
condition of the theorem is equivalent to the condition that
{sn} be a Cauchy sequence. As we know, a sequence is
convergent if and only if it is a Cauchy sequence.



Examples

•
1

2
+

1

22
+ · · ·+

1

2n
+ · · · = 1.

The partial sums sn of this series satisfy sn = 1− 2−n for all
n ∈ N. Thus sn → 1 as n → ∞.

•
1

1 · 2
+

1

2 · 3
+ · · ·+

1

n(n + 1)
+ · · · = 1.

Since 1
n(n+1)

= 1
n
− 1

n+1
, the partial sums sn of this series

satisfy sn = 1− 1
n+1

. Thus sn → 1 as n → ∞.

•
∑∞

n=1
(−1)n = −1 + 1− 1 + . . . diverges.

The partial sums sn satisfy sn = − 1 for odd n and sn = 0
for even n. Hence the sequence {sn} has no limit.



Some properties of infinite series

Theorem (Divergence Test) If the terms of an infinite
series do not converge to zero, then the series diverges.

Theorem If
∑

∞

n=1 an and
∑

∞

n=1 bn are convergent series,
then ∑

∞

n=1
(an + bn) =

∑
∞

n=1
an +

∑
∞

n=1
bn

and ∑
∞

n=1
(ran) = r

∑
∞

n=1
an

for any r ∈ R.

Theorem If
∑

∞

n=1 an and
∑

∞

n=1 bn are convergent series,
and an ≤ bn for all n ∈ N, then∑

∞

n=1
an ≤

∑
∞

n=1
bn.



Example

• The geometric series
∑∞

n=0
xn converges if

and only if |x | < 1, in which case its sum is
1

1− x
.

In the case |x | ≥ 1, the series fails the Divergence Test. For
any x 6= 1, the partial sums sn of the geometric series satisfy

sn = 1 + x + x2 + · · ·+ xn =
1− xn+1

1− x
.

In the case |x | < 1, we obtain that sn → 1/(1− x) as
n → ∞.



Series with nonnegative terms

Suppose that a series
∑

∞

n=1 an has nonnegative terms,
an ≥ 0 for all n ∈ N. Then the sequence of partial sums
sn = a1 + a2 + · · ·+ an is increasing. It follows that {sn}
converges to a finite limit if bounded and diverges to +∞
otherwise. In the latter case, we write

∑
∞

n=1 an = ∞.

Theorem (Comparison Test) Suppose that an, bn ≥ 0 for
all n ∈ N and an ≤ bn for large n. Then convergence of the
series

∑
∞

n=1 bn implies convergence of
∑

∞

n=1 an while∑
∞

n=1 an = ∞ implies
∑

∞

n=1 bn = ∞.

Proof: Since changing a finite number of terms does not
affect convergence of a series, it is no loss to assume that
an ≤ bn for all n ∈ N. Then the partial sums sn =

∑n

k=1 ak
and tn =

∑n

k=1 bk satisfy sn ≤ tn for all n. Consequently, if
sn → +∞ as n → ∞, then also tn → +∞ as n → ∞.
Conversely, if {tn} is bounded, then so is {sn}.



Integral test

Theorem Suppose that a function f : [1,∞) → R is
positive and decreasing on [1,∞). Then
(i) a sequence {yn} is bounded, where

yn = f (1) + f (2) + · · ·+ f (n)−

∫ n

1

f (x) dx , n = 1, 2, . . .

(ii) the series
∑

∞

n=1 f (n) is convergent if and only if the
function f is improperly integrable on [1,∞).

To prove the theorem, we need the following lemma.

Lemma Any monotone function g : [a, b] → R is integrable
on [a, b].

Idea of the proof: Any monotone function has only jump
discontinuities. Further, any function has at most countably
many jump discontinuities. Besides, a monotone function on
[a, b] is clearly bounded.



Proof of the theorem: The lemma implies that the function f

is integrable on every closed interval J = [a, b] ⊂ [1,∞).
Then for any partition P of the interval J the lower Darboux
sum L(f ,P) and the upper Darboux sum U(f ,P) satisfy

L(f ,P) ≤

∫ b

a

f (x) dx ≤ U(f ,P).

Let P = {x0, x1, . . . , xk}, where x0 < x1 < · · · < xk . Then
sup f ([xj−1, xj ]) = f (xj−1) and inf f ([xj−1, xj ]) = f (xj) since f

is decreasing. In the case J = [1, n], where n ∈ N, and
P = {1, 2, . . . , n} we obtain L(f ,P) = f (2)+f (3)+ . . .+f (n),
U(f ,P) = f (1) + f (2) + · · ·+ f (n−1). Then the above
inequalities imply that 0 < f (n) ≤ yn ≤ f (1). Thus the
sequence {yn} is bounded.

Since f is positive, the series
∑

∞

n=1 f (n) either converges or
else it diverges to +∞. Likewise the improper integral∫

∞

1
f (x) dx either converges or else it diverges to +∞. Since

the sequence {yn} is bounded, divergence of the series and
the integral imply each other.



Examples

•
∑∞

n=1

1

np
is convergent for any p > 1 and

divergent for any p < 1.

For any p 6= 1 we have
∫
x−p dx = x1−p/(1− p) + C on the

interval [1,∞). The antiderivative converges to a finite limit
at +∞ in the case p > 1 and diverges to +∞ in the case
p < 1. Hence the function f (x) = x−p is improperly
integrable on [1,∞) for p > 1 but not for p < 1. By the
Integral Test, the series is convergent for p > 1 and divergent
for 0 ≤ p < 1. If p < 0 then the Integral Test does not apply
since f is not decreasing. In this case, the series is divergent
since the terms 1/np do not converge to 0 as n → ∞.



Examples

• The harmonic series
∑∞

n=1

1

n
diverges.

Indeed,
∫ n

1
x−1 dx = log n → +∞ as n → ∞. By the

Integral Test, the series is divergent. Moreover, the sequence
yn =

∑n

k=1 k
−1 − log n is bounded (actually, it is decreasing

and hence convergent).

•
∑∞

n=2

1

n log2n
converges.

The antiderivative of f (x) = (x log2 x)−1 on (1,∞) is∫
dx

x log2x
=

∫
d(log x)

log2x
= −

1

log x
+ C .

Since the antiderivative converges to a finite limit at +∞, the
function f is improperly integrable on [2,∞). By the Integral
Test, the series converges.



Examples

•
∑∞

n=1

1

1 + n2
converges.

Indeed, 0 < 1/(1 + n2) < 1/n2 for all n ∈ N. Since the
series

∑
∞

n=1 1/n
2 is convergent, it remains to apply the

Comparison Test. Alternatively, we can use the Integral Test.

Indeed,

∫
dx

1 + x2
= arctan x + C converges to a finite limit

at +∞ so that the function f (x) = 1/(1 + x2) is improperly
integrable on [1,∞).

•
∑∞

n=1
e−n

2

converges.

We have 0 < e−n2 ≤ e−n for all n ∈ N. The geometric series∑
∞

n=1 e
−n is convergent since 0 < e−1 < 1. By the

Comparison Test,
∑

∞

n=1 e
−n2 is convergent as well.


