MATH 409
 Advanced Calculus I

Lecture 24:
Alternating series.
Absolute convergence of series.

Some tests of convergence

[Divergence Test] If the terms of an infinite series do not converge to zero, then the series diverges.
[Cauchy Criterion] An infinite series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $m \geq n \geq N$ implies $\left|a_{n}+a_{n+1}+\cdots+a_{m}\right|<\varepsilon$.
[Comparison Test] Suppose that $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$ and $a_{n} \leq b_{n}$ for large n. Then convergence of the series $\sum_{n=1}^{\infty} b_{n}$ implies convergence of $\sum_{n=1}^{\infty} a_{n}$ while $\sum_{n=1}^{\infty} a_{n}=\infty$ implies $\sum_{n=1}^{\infty} b_{n}=\infty$.
[Integral Test] Suppose that a function $f:[1, \infty) \rightarrow \mathbb{R}$ is positive and decreasing on $[1, \infty)$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if the function f is improperly integrable on $[1, \infty)$.

Alternating Series Test

Definition. An infinite series $\sum_{n=1}^{\infty} a_{n}$ is called alternating if any two neighboring terms have different signs: $a_{n} a_{n+1}<0$ for all $n \in \mathbb{N}$.

Theorem (Leibniz Criterion) If $\left\{a_{n}\right\}$ is a decreasing sequence of positive numbers and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots
$$

converges.

Theorem (Leibniz Criterion) If $\left\{a_{n}\right\}$ is a decreasing sequence of positive numbers and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ converges.

Proof: Let $s_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k}$ be the partial sum of order n of the series. For any $n \in \mathbb{N}$ we have

$$
s_{2 n}=s_{2 n-1}-a_{2 n}<s_{2 n-1}
$$

Since the sequence $\left\{a_{n}\right\}$ is decreasing, we also have

$$
\begin{gathered}
s_{2 n+1}=s_{2 n-1}-a_{2 n}+a_{2 n+1} \leq s_{2 n-1} \\
s_{2 n+2}=s_{2 n}+a_{2 n+1}-a_{2 n+2} \geq s_{2 n}
\end{gathered}
$$

Therefore $s_{2 n} \leq s_{2 n+2}<s_{2 n+1} \leq s_{2 n-1}$ for all $n \in \mathbb{N}$. It follows that a subsequence $\left\{s_{2 n}\right\}$ is increasing, a subsequence $\left\{s_{2 n-1}\right\}$ is decreasing, and both are bounded. Hence both subsequences are convergent. Since $s_{2 n-1}-s_{2 n}=a_{2 n} \rightarrow 0$ as $n \rightarrow \infty$, both subsequences converge to the same limit L. Then L is the limit of the entire sequence $\left\{s_{n}\right\}$.

Examples

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$

The series converges due to the Alternating Series Test. One can show that the sum is $\log 2$.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n-1}=-1+\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\ldots
$$

After multiplying all terms by -1 , the series satisfy all conditions of the Alternating Series Test. It follows that the series converges. One can show that the sum is $-\pi / 4$.

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2 n-1}=1-\frac{2}{3}+\frac{3}{5}-\frac{4}{7}+\ldots$

The series is alternating and the terms decrease in absolute value. However the absolute values of terms converge to $1 / 2$ instead of 0 . Hence the series diverges.

Absolute convergence

Definition. An infinite series $\sum_{n=1}^{\infty} a_{n}$ is said to converge absolutely if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$.

Theorem Any absolutely convergent series is convergent.
Proof: Suppose that a series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, i.e., the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. By the Cauchy Criterion, for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|\left|a_{n}\right|+\left|a_{n+1}\right|+\cdots+\left|a_{m}\right|\right|<\varepsilon
$$

for $m \geq n \geq N$. Then

$$
\left|a_{n}+a_{n+1}+\cdots+a_{m}\right| \leq\left|a_{n}\right|+\left|a_{n+1}\right|+\cdots+\left|a_{m}\right|<\varepsilon
$$

for $m \geq n \geq N$. According to the Cauchy Criterion, the series $\sum_{n=1}^{\infty} a_{n}$ converges.

Examples

- $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\ldots$

The series converges due to the Integral Test. Since it has positive terms, it is absolutely convergent as well.

- $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}=\sin 1+\frac{\sin 2}{4}+\frac{\sin 3}{9}+\frac{\sin 4}{16}+\ldots$

Since $\left|\sin (n) / n^{2}\right| \leq 1 / n^{2}$ and the series $\sum_{n=1}^{\infty} 1 / n^{2}$ converges, this series converges absolutely due to the Comparison Test.

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$

The series converges (due to the Alternating Series Test), but not absolutely as the series $\sum_{n=1}^{\infty} 1 / n$ diverges.

Ratio Test a.k.a. d'Alembert's Criterion

Theorem Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $a_{n} \neq 0$ for large n. Suppose that a limit

$$
r=\lim _{n \rightarrow \infty} \frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}
$$

exists (finite or infinite).
(i) If $r<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
(ii) If $r>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Remark. In the case $r=1$, the Ratio Test is inconclusive. For example, consider a series $\sum_{n=1}^{\infty} n^{-p}$, where $p>0$. Then

$$
r=\lim _{n \rightarrow \infty} \frac{(n+1)^{-p}}{n^{-p}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)^{p}=1
$$

for all $p>0$. However the series converges for $p>1$ and diverges for $0<p \leq 1$.

Theorem Let $\left\{a_{n}\right\}$ be a sequence of real numbers with $a_{n} \neq 0$ for large n. Suppose that a limit $r=\lim _{n \rightarrow \infty}\left|a_{n+1}\right| /\left|a_{n}\right|$ exists (finite or infinite).
(i) If $r<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
(ii) If $r>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: If $r>1$, then $\left|a_{n+1}\right| /\left|a_{n}\right|>1$ for n large enough. It follows that the sequence $\left\{\left|a_{n}\right|\right\}$ is eventually increasing.
Then $a_{n} \nrightarrow 0$ as $n \rightarrow \infty$ so that the series $\sum_{n=1}^{\infty} a_{n}$ diverges due to the Divergence Test.
In the case $r<1$, choose some $x \in(r, 1)$. Then $\left|a_{n+1}\right| /\left|a_{n}\right|<x$ for n large enough. Consequently, $\left|a_{n+1}\right| / x^{n+1}<\left|a_{n}\right| / x^{n}$ for n large enough. That is, the sequence $\left\{\left|a_{n}\right| / x^{n}\right\}$ is eventually decreasing. It follows that this sequence is bounded. Hence $\left|a_{n}\right| \leq C x^{n}$ for some $C>0$ and all $n \in \mathbb{N}$. Since $0<r<x<1$, the geometric series $\sum_{n=1}^{\infty} x^{n}$ converges. So does the series $\sum_{n=1}^{\infty} C x^{n}$. By the Comparison Test, the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges as well.

Root Test

Theorem Let $\left\{a_{n}\right\}$ be a sequence of real numbers and

$$
r=\limsup _{n \rightarrow \infty} \sqrt[n]{\left|a_{n}\right|} .
$$

(i) If $r<1$, then $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
(ii) If $r>1$, then $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: If $r>1$, then $\sup _{k \geq n} \sqrt[k]{\left|a_{k}\right|} \geq r>1$ for all $n \in \mathbb{N}$. Therefore for any $n \in \mathbb{N}$ there exists $k(n) \geq n$ such that $\left|a_{k(n)}\right|^{1 / k(n)}>1$. In particular, $\left|a_{k(n)}\right|>1$. It follows that $a_{k} \nrightarrow 0$ as $k \rightarrow \infty$ so that the series $\sum_{k=1}^{\infty} a_{k}$ diverges due to the Divergence Test.
In the case $r<1$, choose some $x \in(r, 1)$. Then
$\sup _{k \geq n} \sqrt[k]{\left|a_{k}\right|}<x$ for some $n \in \mathbb{N}$. This implies that $\left|a_{k}\right|<x^{k}$ for all $k \geq n$. Since $0<r<x<1$, the geometric series $\sum_{k=1}^{\infty} x^{k}$ converges. By the Comparison Test, the series $\sum_{k=1}^{\infty}\left|a_{k}\right|$ converges as well.

Examples

$$
\text { - } \sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\ldots
$$

If $a_{n}=n / 2^{n}$, then

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+1}{2^{n+1}}\left(\frac{n}{2^{n}}\right)^{-1}=\frac{n+1}{2 n}=\frac{1}{2}+\frac{1}{2 n} \rightarrow \frac{1}{2}
$$

as $n \rightarrow \infty$. By the Ratio Test, the series converges.

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots, \quad x \in \mathbb{R}
$$

In the case $x=0$, we have a finite sum. In the case $x \neq 0$, let $a_{n}=x^{n} / n!, n \in \mathbb{N}$. Then

$$
\frac{\left|a_{n+1}\right|}{\left|a_{n}\right|}=\frac{|x|^{n+1}}{(n+1)!}\left(\frac{|x|^{n}}{n!}\right)^{-1}=\frac{|x|}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

By the Ratio Test, the series converges absolutely for all $x \neq 0$.

Examples

- $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}=\frac{(1!)^{2}}{2!}+\frac{(2!)^{2}}{4!}+\frac{(3!)^{2}}{6!}+\ldots$

If $a_{n}=(n!)^{2} /(2 n)!$, then

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{2}}{(2 n+1)(2 n+2)}=\frac{n+1}{2(2 n+1)}=\frac{1+n^{-1}}{4+2 n^{-1}} \rightarrow \frac{1}{4}
$$

as $n \rightarrow \infty$. By the Ratio Test, the series converges.

- $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}=\frac{1}{2}+\left(\frac{2}{3}\right)^{4}+\left(\frac{3}{4}\right)^{9}+\ldots$

If $a_{n}=(n /(n+1))^{n^{2}}$, then

$$
\sqrt[n]{a_{n}}=\left(\frac{n}{n+1}\right)^{n}=\left(\frac{n+1}{n}\right)^{-n}=\left(1+\frac{1}{n}\right)^{-n} \rightarrow \frac{1}{e}
$$

as $n \rightarrow \infty$. By the Root Test, the series converges.

