MATH 409 Advanced Calculus I

Lecture 25: Review for the final exam.

Part I: Axiomatic model of the real numbers

- Axioms of an ordered field
- Completeness axiom
- Archimedean principle
- Principle of mathematical induction
- Binomial formula
- Countable and uncountable sets

Wade's book: 1.1–1.6, Appendix A

Part II: Limits and continuity

- Limits of sequences
- Limit theorems for sequences
- Monotone sequences
- Bolzano-Weierstrass theorem
- Cauchy sequences
- Limits of functions
- Limit theorems for functions
- Continuity of functions
- Extreme value and intermediate value theorems
- Uniform continuity

Wade's book: 2.1–2.5, 3.1–3.4

Part III-a: Differential calculus

- Derivative of a function
- Differentiability theorems
- Derivative of the inverse function
- The mean value theorem
- Taylor's formula
- l'Hôpital's rule

Wade's book: 4.1–4.5

Part III-b: Integral calculus

- Darboux sums, Riemann sums, the Riemann integral
 - Properties of integrals
 - The fundamental theorem of calculus
 - Integration by parts
 - Change of the variable in an integral
 - Improper integrals, absolute integrability

Wade's book: 5.1–5.4

Part IV: Infinite series

- Convergence of series
- Comparison test and integral test
- Alternating series test
- Absolute convergence
- Ratio test and root test

```
Wade's book: 6.1–6.4
```

Theorems to know

Archimedean Principle For any real number $\varepsilon > 0$ there exists a natural number *n* such that $n\varepsilon > 1$.

Theorem The sets \mathbb{Z} , \mathbb{Q} , and $\mathbb{N} \times \mathbb{N}$ are countable.

Theorem The set \mathbb{R} is uncountable.

Theorems on limits

Squeeze Theorem If $\lim_{n\to\infty} x_n = \lim_{n\to\infty} y_n = a$ and $x_n \le w_n \le y_n$ for all sufficiently large *n*, then $\lim_{n\to\infty} w_n = a$.

Theorem Any monotone sequence converges to a limit if bounded, and diverges to infinity otherwise.

Theorem Any Cauchy sequence is convergent.

Theorems on derivatives

Theorem If functions f and g are differentiable at a point $a \in \mathbb{R}$, then their sum f + g, difference f - g, and product $f \cdot g$ are also differentiable at a. Moreover,

$$(f+g)'(a) = f'(a) + g'(a),$$

 $(f-g)'(a) = f'(a) - g'(a),$
 $(f \cdot g)'(a) = f'(a)g(a) + f(a)g'(a)$

If, additionally, $g(a) \neq 0$ then the quotient f/g is also differentiable at a and

$$\left(rac{f}{g}
ight)'(a)=rac{f'(a)g(a)-f(a)g'(a)}{(g(a))^2}$$

Mean Value Theorem If a function f is continuous on [a, b] and differentiable on (a, b), then there exists $c \in (a, b)$ such that f(b) - f(a) = f'(c) (b - a).

Theorems on integrals

Theorem If functions f, g are integrable on an interval [a, b], then the sum f + g is also integrable on [a, b] and

$$\int_a^b (f(x)+g(x))\,dx=\int_a^b f(x)\,dx+\int_a^b g(x)\,dx.$$

Theorem If a function f is integrable on [a, b] then for any $c \in (a, b)$,

$$\int_a^b f(x)\,dx = \int_a^c f(x)\,dx + \int_c^b f(x)\,dx.$$

Theorems on series

Integral Test Suppose that $f : [1, \infty) \to \mathbb{R}$ is positive and decreasing on $[1, \infty)$. Then the series $\sum_{n=1}^{\infty} f(n)$ converges if and only if the function f is improperly integrable on $[1, \infty)$.

Ratio Test Let $\{a_n\}$ be a sequence of reals with $a_n \neq 0$ for large *n*. Suppose that a limit

$$r = \lim_{n \to \infty} \frac{|a_{n+1}|}{|a_n|}$$

exists (finite or infinite).

(i) If r < 1, then $\sum_{n=1}^{\infty} a_n$ converges absolutely. (ii) If r > 1, then $\sum_{n=1}^{\infty} a_n$ diverges.

Problem 1 (20 pts.) Suppose E_1, E_2, E_3, \ldots are countable sets. Prove that their union $E_1 \cup E_2 \cup E_3 \cup \ldots$ is also a countable set.

Problem 2 (20 pts.) Find the following limits: (i) $\lim_{x\to 0} \log \frac{1}{1+\cot(x^2)}$, (ii) $\lim_{x\to 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$, (iii) $\lim_{n\to\infty} \left(1+\frac{c}{n}\right)^n$, where $c \in \mathbb{R}$.

Problem 3 (20 pts.) Prove that the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$

converges to $\sin x$ for any $x \in \mathbb{R}$.

Problem 4 (20 pts.) Find an indefinite integral and evaluate definite integrals:

(i)
$$\int \frac{\sqrt{1+\sqrt[4]{x}}}{2\sqrt{x}} dx$$
, (ii) $\int_{0}^{\sqrt{3}} \frac{x^{2}+6}{x^{2}+9} dx$,
(iii) $\int_{0}^{\infty} x^{2} e^{-x} dx$.

Problem 5 (20 pts.) For each of the following series, determine whether the series converges and whether it converges absolutely:

(i)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}},$$
 (ii)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+2^n} \cos n}{n!},$$

(iii)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}.$$

Bonus Problem 6 (15 pts.) Prove that an infinite product

$$\prod_{n=1}^{\infty} \frac{n^2 + 1}{n^2} = \frac{2}{1} \cdot \frac{5}{4} \cdot \frac{10}{9} \cdot \frac{17}{16} \cdot \dots$$

converges, that is, partial products $\prod_{k=1}^{n} \frac{k^2+1}{k^2}$ converge to a finite limit as $n \to \infty$.

Problem 1. Suppose E_1, E_2, E_3, \ldots are countable sets. Prove that their union $E_1 \cup E_2 \cup \ldots$ is also a countable set.

First we are going to show that the set $\mathbb{N} \times \mathbb{N}$ is countable. Consider a relation \prec on the set $\mathbb{N} \times \mathbb{N}$ such that $(n_1, n_2) \prec (m_1, m_2)$ if and only if either $n_1 + n_2 < m_1 + m_2$ or else $n_1 + n_2 = m_1 + m_2$ and $n_1 < m_1$. It is easy to see that \prec is a strict linear order. Moreover, for any pair $(m_1, m_2) \in \mathbb{N} \times \mathbb{N}$ there are only finitely many pairs (n_1, n_2) such that $(n_1, n_2) \prec (m_1, m_2)$. It follows that \prec is a well-ordering. Now we define inductively a mapping $F: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ such that for any $n \in \mathbb{N}$ the pair F(n) is the least (relative to \prec) pair different from F(k) for all natural numbers k < n. It follows from the construction that F is bijective. The inverse mapping F^{-1} can be given explicitly by

$$F^{-1}(n_1, n_2) = \frac{(n_1 + n_2 - 2)(n_1 + n_2 - 1)}{2} + n_1, \ n_1, n_2 \in \mathbb{N}.$$

Thus $\mathbb{N} \times \mathbb{N}$ is a countable set.

Now suppose that E_1, E_2, \ldots are countable sets. Then for any $n \in \mathbb{N}$ there exists a bijective mapping $f_n : \mathbb{N} \to E_n$. Let us define a map $g : \mathbb{N} \times \mathbb{N} \to E_1 \cup E_2 \cup \ldots$ by $g(n_1, n_2) = f_{n_1}(n_2)$. Obviously, g is onto.

Since the set $\mathbb{N} \times \mathbb{N}$ is countable, there exists a sequence p_1, p_2, p_3, \ldots that forms a complete list of its elements. Then the sequence $g(p_1), g(p_2), g(p_3), \ldots$ contains all elements of the union $E_1 \cup E_2 \cup E_3 \cup \ldots$ Although the latter sequence may include repetitions, we can choose a subsequence $\{g(p_{n_k})\}$ in which every element of the union appears exactly once. Note that the subsequence is infinite since each of the sets E_1, E_2, \ldots is infinite.

Now the map $h: \mathbb{N} \to E_1 \cup E_2 \cup E_3 \cup \ldots$ defined by $h(k) = g(p_{n_k}), \ k = 1, 2, \ldots$, is a bijection.

Problem 2. Find the following limits:

-1

(i)
$$\lim_{x\to 0} \log \frac{1}{1 + \cot(x^2)}$$
.

The function
$$f(x) = \log \frac{1}{1 + \cot(x^2)}$$
 can be represented as
the composition of 4 functions: $f_1(x) = x^2$, $f_2(y) = \cot y$,
 $f_3(z) = (1 + z)^{-1}$, and $f_4(u) = \log u$.

Since the function f_1 is continuous, we have $\lim_{x\to 0} f_1(x) = f_1(0) = 0.$ Moreover, $f_1(x) > 0$ for $x \neq 0$. Since $\lim_{y\to 0+} \cot y = +\infty$, it follows that $f_2(f_1(x)) \to +\infty$ as $x \to 0$.

Further,
$$f_3(z) \to 0+$$
 as $z \to +\infty$ and $f_4(u) \to -\infty$ as $u \to 0+$. Finally, $f(x) = f_4(f_3(f_2(f_1(x)))) \to -\infty$ as $x \to 0$.

Problem 2. Find the following limits:

(ii)
$$\lim_{x\to 64} \frac{\sqrt{x}-8}{\sqrt[3]{x}-4}$$
.

Consider a function $u(x) = x^{1/6}$ defined on $(0, \infty)$. Since this function is continuous at 64 and u(64) = 2, we obtain

$$\lim_{x \to 64} \frac{\sqrt{x} - 8}{\sqrt[3]{x} - 4} = \lim_{x \to 64} \frac{(u(x))^3 - 8}{(u(x))^2 - 4}$$
$$= \lim_{y \to 2} \frac{y^3 - 8}{y^2 - 4} = \lim_{y \to 2} \frac{(y - 2)(y^2 + 2y + 4)}{(y - 2)(y + 2)}$$
$$= \lim_{y \to 2} \frac{y^2 + 2y + 4}{y + 2} = \frac{y^2 + 2y + 4}{y + 2} \Big|_{y = 2} = 3.$$

Problem 2. Find the following limits:

(iii)
$$\lim_{n\to\infty} \left(1+\frac{c}{n}\right)^n$$
, where $c\in\mathbb{R}$.

Let $a_n = (1 + c/n)^n$, n = 1, 2, ... For *n* large enough, we have 1 + c/n > 0 so that $a_n > 0$. Then

$$\log a_n = \log\left(1 + \frac{c}{n}\right)^n = n \log\left(1 + \frac{c}{n}\right) = \left.\frac{\log(1 + cx)}{x}\right|_{x = 1/n}$$

Since
$$1/n \to 0$$
 as $n \to \infty$ and

$$\lim_{x \to 0} \frac{\log(1 + cx)}{x} = \left. \left(\log(1 + cx) \right)' \right|_{x=0} = \frac{c}{1 + cx} \bigg|_{x=0} = c,$$

we obtain that $\log a_n \to c$ as $n \to \infty$. Therefore $a_n = e^{\log a_n} \to e^c$ as $n \to \infty$.

Problem 3. Prove that the series

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^{2n-1}}{(2n-1)!} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

converges to $\sin x$ for any $x \in \mathbb{R}$.

The function $f(x) = \sin x$ is infinitely differentiable on \mathbb{R} . According to Taylor's formula, for any $x, x_0 \in \mathbb{R}$ and $n \in \mathbb{N}$, $f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x-x_0) + \cdots + \frac{f^{(n)}(x_0)}{n!}(x-x_0)^n + R_n(x,x_0),$ where $R_n(x, x_0) = \frac{f^{(n+1)}(\theta)}{(n+1)!}(x-x_0)^{n+1}$ for some $\theta = \theta(x, x_0)$ between x and x_0 . Since $f'(x) = \cos x$ and $f''(x) = -\sin x = -f(x)$ for all $x \in \mathbb{R}$, it follows that $|f^{(n+1)}(\theta)| < 1$ for all $n \in \mathbb{N}$ and $\theta \in \mathbb{R}$. Further, one derives that $R_n(x, x_0) \to 0$ as $n \to \infty$. Thus we obtain an expansion of sin x into a series. In the case $x_0 = 0$, this is the required series (up to zero terms).

Problem 4. Find an indefinite integral and evaluate definite integrals:

(i)
$$\int \frac{\sqrt{1+\sqrt[4]{x}}}{2\sqrt{x}} dx.$$

To find this integral, we change the variable twice. First

$$\int \frac{\sqrt{1+\sqrt[4]{x}}}{2\sqrt{x}}\,dx = \int \sqrt{1+\sqrt[4]{x}}\,(\sqrt{x})'\,dx = \int \sqrt{1+\sqrt{u}}\,\,du,$$

where $u = \sqrt{x}$. Secondly, we introduce a variable $w = \sqrt{1 + \sqrt{u}}$. Then $u = (w^2 - 1)^2$ so that $du = ((w^2 - 1)^2)' dw = 2(w^2 - 1) \cdot 2w dw = (4w^3 - 4w) dw$. Consequently,

$$\int \sqrt{1 + \sqrt{u}} \, du = \int w \, du = \int (4w^4 - 4w^2) \, dw$$
$$= \frac{4}{5}w^5 - \frac{4}{3}w^3 + C = \frac{4}{5}(1 + x^{1/4})^{5/2} - \frac{4}{3}(1 + x^{1/4})^{3/2} + C.$$

Problem 4. Find an indefinite integral and evaluate definite integrals:

(ii)
$$\int_0^{\sqrt{3}} \frac{x^2+6}{x^2+9} \, dx.$$

To evaluate this definite integral, we use linearity of the integral and a substitution x = 3u:

$$\int_{0}^{\sqrt{3}} \frac{x^{2} + 6}{x^{2} + 9} dx = \int_{0}^{\sqrt{3}} \left(1 - \frac{3}{x^{2} + 9} \right) dx = \int_{0}^{\sqrt{3}} 1 dx$$
$$- \int_{0}^{\sqrt{3}} \frac{3}{x^{2} + 9} dx = \sqrt{3} - \int_{0}^{\sqrt{3}/3} \frac{3}{(3u)^{2} + 9} d(3u)$$
$$= \sqrt{3} - \int_{0}^{1/\sqrt{3}} \frac{1}{u^{2} + 1} du = \sqrt{3} - \arctan u \Big|_{u=0}^{1/\sqrt{3}} = \sqrt{3} - \frac{\pi}{6}.$$

Problem 4. Find an indefinite integral and evaluate definite integrals:

(iii)
$$\int_0^\infty x^2 e^{-x} \, dx.$$

To evaluate the improper integral, we integrate by parts twice:

$$\int_{0}^{\infty} x^{2} e^{-x} dx = -\int_{0}^{\infty} x^{2} (e^{-x})' dx = -\int_{0}^{\infty} x^{2} d(e^{-x})$$
$$= -x^{2} e^{-x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-x} d(x^{2}) = \int_{0}^{\infty} e^{-x} (x^{2})' dx$$
$$= \int_{0}^{\infty} 2x e^{-x} dx = -\int_{0}^{\infty} 2x (e^{-x})' dx = -\int_{0}^{\infty} 2x d(e^{-x})$$
$$= -2x e^{-x} \Big|_{0}^{\infty} + \int_{0}^{\infty} e^{-x} d(2x) = \int_{0}^{\infty} 2e^{-x} dx$$
$$= -2e^{-x} \Big|_{0}^{\infty} = 2.$$

Problem 5. For each of the following series, determine if the series converges and if it converges absolutely:

(i)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$$
, (ii) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+2^n \cos n}{n!}$, (iii) $\sum_{n=2}^{\infty} \frac{(-1)^n}{n \log n}$

The first series diverges since

$$\sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{\sqrt{n+1} + \sqrt{n}} = \sum_{n=1}^{\infty} \frac{1}{\left(\sqrt{n+1} + \sqrt{n}\right)^2} > \sum_{n=1}^{\infty} \frac{1}{4(n+1)} = +\infty.$$

The second series can be represented as $\sum_{n=1}^{\infty} (b_n + c_n \cos n)$, where $b_n = \sqrt{n}/n!$ and $c_n = 2^n/n!$ for all $n \in \mathbb{N}$. The series $\sum_{n=1}^{\infty} b_n$ and $\sum_{n=1}^{\infty} c_n$ both converge (due to the Ratio Test), and so does $\sum_{n=1}^{\infty} (b_n + c_n)$. Since $|b_n + c_n \cos n| \le b_n + c_n$ for all $n \in \mathbb{N}$, the series $\sum_{n=1}^{\infty} (b_n + c_n \cos n)$ converges absolutely due to the Comparison Test.

Finally, the third series converges (due to the Alternating Series Test), but not absolutely (due to the Integral Test).