Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Prove that for any $n \in \mathbb{N}$,

$$1^{3} + 2^{3} + 3^{3} + \dots + n^{3} = \frac{n^{2}(n+1)^{2}}{4}$$

Problem 2 (30 pts.) Let $\{F_n\}$ be the sequence of Fibonacci numbers: $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

(i) Show that the sequence $\{F_{2k}/F_{2k-1}\}_{k\in\mathbb{N}}$ is increasing while the sequence $\{F_{2k+1}/F_{2k}\}_{k\in\mathbb{N}}$ is decreasing.

(ii) Prove that $\lim_{n \to \infty} \frac{F_{n+1}}{F_n} = \frac{\sqrt{5}+1}{2}.$

Problem 3 (25 pts.) Prove the Extreme Value Theorem: if $f : [a, b] \to \mathbb{R}$ is a continuous function on a closed bounded interval [a, b], then f is bounded and attains its extreme values (maximum and minimum) on [a, b].

Problem 4 (20 pts.) Consider a function $f : \mathbb{R} \to \mathbb{R}$ defined by f(-1) = f(0) = f(1) = 0and $f(x) = \frac{x-1}{x^2-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \setminus \{-1, 0, 1\}$.

(i) Determine all points at which the function f is continuous.

(ii) Is the function f uniformly continuous on the interval (0, 1)? Is it uniformly continuous on the interval (1, 2)? Explain.

Bonus Problem 5 (15 pts.) Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.