Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Prove that for any $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Problem 2 (30 pts.) Let $\left\{F_{n}\right\}$ be the sequence of Fibonacci numbers: $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.
(i) Show that the sequence $\left\{F_{2 k} / F_{2 k-1}\right\}_{k \in \mathbb{N}}$ is increasing while the sequence $\left\{F_{2 k+1} / F_{2 k}\right\}_{k \in \mathbb{N}}$ is decreasing.
(ii) Prove that $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{\sqrt{5}+1}{2}$.

Problem 3 (25 pts.) Prove the Extreme Value Theorem: if $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function on a closed bounded interval $[a, b]$, then f is bounded and attains its extreme values (maximum and minimum) on $[a, b]$.

Problem 4 (20 pts.) Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(-1)=f(0)=f(1)=0$ and $f(x)=\frac{x-1}{x^{2}-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \backslash\{-1,0,1\}$.
(i) Determine all points at which the function f is continuous.
(ii) Is the function f uniformly continuous on the interval $(0,1)$? Is it uniformly continuous on the interval $(1,2)$? Explain.

Bonus Problem 5 (15 pts .) Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

