
MATH 409–501/503 Fall 2013

Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Prove that for any n ∈ N,

13 + 23 + 33 + · · ·+ n3 =
n2(n+ 1)2

4
.

The proof is by induction on n. First we consider the case n = 1. In this case the formula reduces
to 13 = 12 · 22/4, which is a true equality. Now assume that the formula holds for n = k, that is,

13 + 23 + · · ·+ k3 =
k2(k + 1)2

4
.

Adding (k + 1)3 to both sides of this equality, we get

13 + 23 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3 = (k + 1)2

(

k2

4
+ (k + 1)

)

= (k + 1)2
k2 + 4k + 4

4
=

(k + 1)2(k + 2)2

4
,

which means that the formula holds for n = k + 1 as well. By induction, the formula holds for every
natural number n.

Problem 2 (30 pts.) Let {Fn} be the sequence of Fibonacci numbers: F1 = F2 = 1 and
Fn = Fn−1 + Fn−2 for n ≥ 2.

(i) Show that the sequence {F2k/F2k−1}k∈N is increasing while the sequence {F2k+1/F2k}k∈N
is decreasing.

Let xn = Fn+1/Fn, n ∈ N. Then

xn+1 =
Fn+2

Fn+1

=
Fn + Fn+1

Fn+1

= 1 +
Fn

Fn+1

= 1 +
1

xn

for all n ∈ N. We obtain that x1 = 1, x2 = 1 + 1/x1 = 2, x3 = 1 + 1/x2 = 3/2, x4 = 1 + 1/x3 = 5/3.
Note that the function f(x) = 1 + 1/x is strictly decreasing on the interval (0,∞) and maps this
interval to itself. Therefore its second iteration g = f ◦f is strictly increasing on (0,∞) and also maps
this interval to itself. Since xn+1 = f(xn) for all n ∈ N, it follows that xn+2 = g(xn) for all n ∈ N.
The above computations show that x1 < x3 < x4 < x2. Since g is strictly increasing, it follows by
induction on k that x2k−1 < x2k+1 < x2k+2 < x2k. In particular, the sequence {x2k−1} is strictly
increasing while the sequence {x2k} is strictly decreasing.
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(ii) Prove that lim
n→∞

Fn+1

Fn

=

√
5 + 1

2
.

By the above the sequence {x2k−1} is strictly increasing while the sequence {x2k} is strictly de-
creasing. Moreover, x2k−1 < x2k for all k ∈ N, which implies that both sequences are bounded. It
follows that both sequences are converging to positive limits c1 and c2, respectively. To prove that
lim
n→∞

Fn+1/Fn = (
√
5+1)/2, it is enough to show that c1 = c2 = (

√
5+1)/2. For any x > 0 we obtain

g(x) = f(f(x)) = f

(

1 +
1

x

)

= 1 +
1

1 + 1

x

= 1 +
1

x+1

x

= 1 +
x

x+ 1
=

2x+ 1

x+ 1
.

It follows that g(x2k−1) → g(c1) and g(x2k) → g(c2) as k → ∞. However g(x2k−1) = x2k+1 and
g(x2k) = x2k+2, which implies that g(c1) = c1 and g(c2) = c2. Since

x− g(x) =
x(x+ 1)

x+ 1
− 2x+ 1

x+ 1
=

x2 − x− 1

x+ 1
,

c1 and c2 are roots of the equation x2 − x − 1 = 0. This equation has two roots, (1 −
√
5)/2 and

(
√
5+1)/2. One of the roots is negative. Thus both c1 and c2 are equal to the other root, (

√
5+1)/2.

Problem 3 (25 pts.) Prove the Extreme Value Theorem: if f : [a, b] → R is a continuous
function on a closed bounded interval [a, b], then f is bounded and attains its extreme values
(maximum and minimum) on [a, b].

First let us prove that the function f is bounded. Assume the contrary. Then for every n ∈ N there
exists a point xn ∈ [a, b] such that |f(xn)| > n. We obtain a sequence {xn} of elements of [a, b] such
that the sequence {f(xn)} diverges to infinity. Since the sequence {xn} is bounded, it has a convergent
subsequence {xnk

} due to the Bolzano-Weierstrass Theorem. Let c be the limit of xnk
as k → ∞.

Since a ≤ xnk
≤ b for all k, the Comparison Theorem implies that a ≤ c ≤ b, i.e., c ∈ [a, b]. Then

the function f is continuous at c. As a consequence, f(xnk
) → f(c) as k → ∞. However the sequence

{f(xnk
)} is a subsequence of {f(xn)} and hence diverges to infinity. This contradiction shows that

the assumption was wrong: the function f is bounded.
Since the function f is bounded, the image f([a, b]) is a bounded subset of R. Let m = inf f([a, b]),

M = sup f([a, b]). For any n ∈ N the number M − 1/n is not an upper bound of the set f([a, b])
while m + 1/n is not a lower bound of f([a, b]). Hence we can find points yn, zn ∈ [a, b] such that
f(yn) > M − 1/n and f(zn) < m+1/n. At the same time, m ≤ f(x) ≤ M for all x ∈ [a, b]. It follows
that f(yn) → M and f(zn) → m as n → ∞. By the Bolzano-Weierstrass Theorem, the sequence {yn}
has a subsequence {ynk

} converging to some c1. The sequence {zn} also has a subsequence {zmk
}

converging to some c2. Moreover, c1, c2 ∈ [a, b]. The continuity of f implies that f(ynk
) → f(c1) and

f(zmk
) → f(c2) as k → ∞. Since {f(ynk

)} is a subsequence of {f(yn)} and {f(zmk
)} is a subsequence

of {f(zn)}, we conclude that f(c1) = M and f(c2) = m. Thus the function f attains its maximum M
on the interval [a, b] at the point c1 and its minimum m at the point c2.
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Problem 4 (20 pts.) Consider a function f : R → R defined by f(−1) = f(0) = f(1) = 0

and f(x) =
x− 1

x2 − 1
sin

1

x
for x ∈ R \ {−1, 0, 1}.

(i) Determine all points at which the function f is continuous.

The polynomial functions g1(x) = x− 1 and g2(x) = x2 − 1 are continuous on the entire real line.
Moreover, g2(x) = 0 if and only if x = 1 or −1. Therefore the quotient g(x) = g1(x)/g2(x) is well
defined and continuous on R \ {−1, 1}. Further, the function h1(x) = 1/x is continuous on R \ {0}.
Since the function h2(x) = sinx is continuous on R, the composition function h(x) = h2(h1(x)) is
continuous on R \ {0}. Clearly, f(x) = g(x)h(x) for all x ∈ R \ {−1, 0, 1}. It follows that the function
f is continuous on R \ {−1, 0, 1}.

It remains to determine whether the function f is continuous at points −1, 0, and 1. Observe
that g(x) = 1/(x + 1) for all x ∈ R \ {−1, 1}. Therefore g(x) → 1 as x → 0, g(x) → 1/2 as
x → 1, and g(x) → ±∞ as x → −1. Since the function h is continuous at −1 and 1, we have
h(x) → h(−1) = − sin 1 as x → −1 and h(x) → h(1) = sin 1 as x → 1. Note that sin 1 6= 0 since
0 < 1 < π/2. It follows that f(x) → ±∞ as x → −1. In particular, f is discontinuous at −1. Also,
f(x) → 1

2
sin 1 as x → 1. Since f(1) = 0, the function f has a removable discontinuity at 1. Finally,

the function f is not continuous at 0 since it has no limit at 0. To be precise, let xn = (π/2 + 2πn)−1

and yn = (−π/2 + 2πn)−1 for all n ∈ N. Then {xn} and {yn} are two sequences of positive numbers
converging to 0. We have h(xn) = 1 and h(yn) = −1 for all n ∈ N. It follows that f(xn) → 1 and
f(yn) → −1 as n → ∞. Hence there is no limit of f(x) as x → 0+.

(ii) Is the function f uniformly continuous on the interval (0, 1)? Is it uniformly continuous
on the interval (1, 2)? Explain.

Any function uniformly continuous on the open interval (0, 1) can be extended to a continuous
function on [0, 1]. As a consequence, such a function has a right-hand limit at 0. However it was
shown above that the function f has no right-hand limit at 0. Therefore f is not uniformly continuous
on (0, 1).

The function f is continuous on (1, 2] and has a removable singularity at 1. Changing the value
of f at 1 to the limit at 1, we obtain a function continuous on [1, 2]. We know that every function
continuous on the closed interval [1, 2] is also uniformly continuous on [1, 2]. Further, any function
uniformly continuous on the set [1, 2] is also uniformly continuous on its subset (1, 2). Since the
redefined function coincides with f on (1, 2), we conclude that f is uniformly continuous on (1, 2).

Bonus Problem 5 (15 pts.) Given a set X , let P(X) denote the set of all subsets of X .
Prove that P(X) is not of the same cardinality as X .

We have to prove that there is no bijective map of X onto P(X). Let us consider an arbitrary
map f : X → P(X). The image f(x) of an element x ∈ X under this map is a subset of X. Let
E = {x ∈ X | x /∈ f(x)}. By definition of the set E, any element x ∈ X belongs to E if and only if it
does not belong to f(x). As a consequence, E 6= f(x) for all x ∈ X. Hence the map f is not onto. In
particular, it is not bijective.
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