Sample problems for Test 1: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (15 pts.) Prove that for any $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

The proof is by induction on n. First we consider the case $n=1$. In this case the formula reduces to $1^{3}=1^{2} \cdot 2^{2} / 4$, which is a true equality. Now assume that the formula holds for $n=k$, that is,

$$
1^{3}+2^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

Adding $(k+1)^{3}$ to both sides of this equality, we get

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+k^{3} & +(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3}=(k+1)^{2}\left(\frac{k^{2}}{4}+(k+1)\right) \\
& =(k+1)^{2} \frac{k^{2}+4 k+4}{4}=\frac{(k+1)^{2}(k+2)^{2}}{4},
\end{aligned}
$$

which means that the formula holds for $n=k+1$ as well. By induction, the formula holds for every natural number n.

Problem 2 (30 pts.) Let $\left\{F_{n}\right\}$ be the sequence of Fibonacci numbers: $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$.
(i) Show that the sequence $\left\{F_{2 k} / F_{2 k-1}\right\}_{k \in \mathbb{N}}$ is increasing while the sequence $\left\{F_{2 k+1} / F_{2 k}\right\}_{k \in \mathbb{N}}$ is decreasing.

Let $x_{n}=F_{n+1} / F_{n}, n \in \mathbb{N}$. Then

$$
x_{n+1}=\frac{F_{n+2}}{F_{n+1}}=\frac{F_{n}+F_{n+1}}{F_{n+1}}=1+\frac{F_{n}}{F_{n+1}}=1+\frac{1}{x_{n}}
$$

for all $n \in \mathbb{N}$. We obtain that $x_{1}=1, x_{2}=1+1 / x_{1}=2, x_{3}=1+1 / x_{2}=3 / 2, x_{4}=1+1 / x_{3}=5 / 3$. Note that the function $f(x)=1+1 / x$ is strictly decreasing on the interval $(0, \infty)$ and maps this interval to itself. Therefore its second iteration $g=f \circ f$ is strictly increasing on $(0, \infty)$ and also maps this interval to itself. Since $x_{n+1}=f\left(x_{n}\right)$ for all $n \in \mathbb{N}$, it follows that $x_{n+2}=g\left(x_{n}\right)$ for all $n \in \mathbb{N}$. The above computations show that $x_{1}<x_{3}<x_{4}<x_{2}$. Since g is strictly increasing, it follows by induction on k that $x_{2 k-1}<x_{2 k+1}<x_{2 k+2}<x_{2 k}$. In particular, the sequence $\left\{x_{2 k-1}\right\}$ is strictly increasing while the sequence $\left\{x_{2 k}\right\}$ is strictly decreasing.
(ii) Prove that $\lim _{n \rightarrow \infty} \frac{F_{n+1}}{F_{n}}=\frac{\sqrt{5}+1}{2}$.

By the above the sequence $\left\{x_{2 k-1}\right\}$ is strictly increasing while the sequence $\left\{x_{2 k}\right\}$ is strictly decreasing. Moreover, $x_{2 k-1}<x_{2 k}$ for all $k \in \mathbb{N}$, which implies that both sequences are bounded. It follows that both sequences are converging to positive limits c_{1} and c_{2}, respectively. To prove that $\lim _{n \rightarrow \infty} F_{n+1} / F_{n}=(\sqrt{5}+1) / 2$, it is enough to show that $c_{1}=c_{2}=(\sqrt{5}+1) / 2$. For any $x>0$ we obtain

$$
g(x)=f(f(x))=f\left(1+\frac{1}{x}\right)=1+\frac{1}{1+\frac{1}{x}}=1+\frac{1}{\frac{x+1}{x}}=1+\frac{x}{x+1}=\frac{2 x+1}{x+1} .
$$

It follows that $g\left(x_{2 k-1}\right) \rightarrow g\left(c_{1}\right)$ and $g\left(x_{2 k}\right) \rightarrow g\left(c_{2}\right)$ as $k \rightarrow \infty$. However $g\left(x_{2 k-1}\right)=x_{2 k+1}$ and $g\left(x_{2 k}\right)=x_{2 k+2}$, which implies that $g\left(c_{1}\right)=c_{1}$ and $g\left(c_{2}\right)=c_{2}$. Since

$$
x-g(x)=\frac{x(x+1)}{x+1}-\frac{2 x+1}{x+1}=\frac{x^{2}-x-1}{x+1}
$$

c_{1} and c_{2} are roots of the equation $x^{2}-x-1=0$. This equation has two roots, $(1-\sqrt{5}) / 2$ and $(\sqrt{5}+1) / 2$. One of the roots is negative. Thus both c_{1} and c_{2} are equal to the other root, $(\sqrt{5}+1) / 2$.

Problem 3 (25 pts.) Prove the Extreme Value Theorem: if $f:[a, b] \rightarrow \mathbb{R}$ is a continuous function on a closed bounded interval $[a, b]$, then f is bounded and attains its extreme values (maximum and minimum) on $[a, b]$.

First let us prove that the function f is bounded. Assume the contrary. Then for every $n \in \mathbb{N}$ there exists a point $x_{n} \in[a, b]$ such that $\left|f\left(x_{n}\right)\right|>n$. We obtain a sequence $\left\{x_{n}\right\}$ of elements of $[a, b]$ such that the sequence $\left\{f\left(x_{n}\right)\right\}$ diverges to infinity. Since the sequence $\left\{x_{n}\right\}$ is bounded, it has a convergent subsequence $\left\{x_{n_{k}}\right\}$ due to the Bolzano-Weierstrass Theorem. Let c be the limit of $x_{n_{k}}$ as $k \rightarrow \infty$. Since $a \leq x_{n_{k}} \leq b$ for all k, the Comparison Theorem implies that $a \leq c \leq b$, i.e., $c \in[a, b]$. Then the function f is continuous at c. As a consequence, $f\left(x_{n_{k}}\right) \rightarrow f(c)$ as $k \rightarrow \infty$. However the sequence $\left\{f\left(x_{n_{k}}\right)\right\}$ is a subsequence of $\left\{f\left(x_{n}\right)\right\}$ and hence diverges to infinity. This contradiction shows that the assumption was wrong: the function f is bounded.

Since the function f is bounded, the image $f([a, b])$ is a bounded subset of \mathbb{R}. Let $m=\inf f([a, b])$, $M=\sup f([a, b])$. For any $n \in \mathbb{N}$ the number $M-1 / n$ is not an upper bound of the set $f([a, b])$ while $m+1 / n$ is not a lower bound of $f([a, b])$. Hence we can find points $y_{n}, z_{n} \in[a, b]$ such that $f\left(y_{n}\right)>M-1 / n$ and $f\left(z_{n}\right)<m+1 / n$. At the same time, $m \leq f(x) \leq M$ for all $x \in[a, b]$. It follows that $f\left(y_{n}\right) \rightarrow M$ and $f\left(z_{n}\right) \rightarrow m$ as $n \rightarrow \infty$. By the Bolzano-Weierstrass Theorem, the sequence $\left\{y_{n}\right\}$ has a subsequence $\left\{y_{n_{k}}\right\}$ converging to some c_{1}. The sequence $\left\{z_{n}\right\}$ also has a subsequence $\left\{z_{m_{k}}\right\}$ converging to some c_{2}. Moreover, $c_{1}, c_{2} \in[a, b]$. The continuity of f implies that $f\left(y_{n_{k}}\right) \rightarrow f\left(c_{1}\right)$ and $f\left(z_{m_{k}}\right) \rightarrow f\left(c_{2}\right)$ as $k \rightarrow \infty$. Since $\left\{f\left(y_{n_{k}}\right)\right\}$ is a subsequence of $\left\{f\left(y_{n}\right)\right\}$ and $\left\{f\left(z_{m_{k}}\right)\right\}$ is a subsequence of $\left\{f\left(z_{n}\right)\right\}$, we conclude that $f\left(c_{1}\right)=M$ and $f\left(c_{2}\right)=m$. Thus the function f attains its maximum M on the interval $[a, b]$ at the point c_{1} and its minimum m at the point c_{2}.

Problem 4 (20 pts.) Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(-1)=f(0)=f(1)=0$ and $f(x)=\frac{x-1}{x^{2}-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \backslash\{-1,0,1\}$.
(i) Determine all points at which the function f is continuous.

The polynomial functions $g_{1}(x)=x-1$ and $g_{2}(x)=x^{2}-1$ are continuous on the entire real line. Moreover, $g_{2}(x)=0$ if and only if $x=1$ or -1 . Therefore the quotient $g(x)=g_{1}(x) / g_{2}(x)$ is well defined and continuous on $\mathbb{R} \backslash\{-1,1\}$. Further, the function $h_{1}(x)=1 / x$ is continuous on $\mathbb{R} \backslash\{0\}$. Since the function $h_{2}(x)=\sin x$ is continuous on \mathbb{R}, the composition function $h(x)=h_{2}\left(h_{1}(x)\right)$ is continuous on $\mathbb{R} \backslash\{0\}$. Clearly, $f(x)=g(x) h(x)$ for all $x \in \mathbb{R} \backslash\{-1,0,1\}$. It follows that the function f is continuous on $\mathbb{R} \backslash\{-1,0,1\}$.

It remains to determine whether the function f is continuous at points $-1,0$, and 1 . Observe that $g(x)=1 /(x+1)$ for all $x \in \mathbb{R} \backslash\{-1,1\}$. Therefore $g(x) \rightarrow 1$ as $x \rightarrow 0, g(x) \rightarrow 1 / 2$ as $x \rightarrow 1$, and $g(x) \rightarrow \pm \infty$ as $x \rightarrow-1$. Since the function h is continuous at -1 and 1 , we have $h(x) \rightarrow h(-1)=-\sin 1$ as $x \rightarrow-1$ and $h(x) \rightarrow h(1)=\sin 1$ as $x \rightarrow 1$. Note that $\sin 1 \neq 0$ since $0<1<\pi / 2$. It follows that $f(x) \rightarrow \pm \infty$ as $x \rightarrow-1$. In particular, f is discontinuous at -1 . Also, $f(x) \rightarrow \frac{1}{2} \sin 1$ as $x \rightarrow 1$. Since $f(1)=0$, the function f has a removable discontinuity at 1 . Finally, the function f is not continuous at 0 since it has no limit at 0 . To be precise, let $x_{n}=(\pi / 2+2 \pi n)^{-1}$ and $y_{n}=(-\pi / 2+2 \pi n)^{-1}$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences of positive numbers converging to 0 . We have $h\left(x_{n}\right)=1$ and $h\left(y_{n}\right)=-1$ for all $n \in \mathbb{N}$. It follows that $f\left(x_{n}\right) \rightarrow 1$ and $f\left(y_{n}\right) \rightarrow-1$ as $n \rightarrow \infty$. Hence there is no limit of $f(x)$ as $x \rightarrow 0+$.
(ii) Is the function f uniformly continuous on the interval $(0,1)$? Is it uniformly continuous on the interval $(1,2)$? Explain.

Any function uniformly continuous on the open interval $(0,1)$ can be extended to a continuous function on $[0,1]$. As a consequence, such a function has a right-hand limit at 0 . However it was shown above that the function f has no right-hand limit at 0 . Therefore f is not uniformly continuous on $(0,1)$.

The function f is continuous on $(1,2]$ and has a removable singularity at 1 . Changing the value of f at 1 to the limit at 1 , we obtain a function continuous on $[1,2]$. We know that every function continuous on the closed interval $[1,2]$ is also uniformly continuous on $[1,2]$. Further, any function uniformly continuous on the set $[1,2]$ is also uniformly continuous on its subset $(1,2)$. Since the redefined function coincides with f on $(1,2)$, we conclude that f is uniformly continuous on $(1,2)$.

Bonus Problem 5 ($\mathbf{1 5}$ pts.) Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

We have to prove that there is no bijective map of X onto $\mathcal{P}(X)$. Let us consider an arbitrary map $f: X \rightarrow \mathcal{P}(X)$. The image $f(x)$ of an element $x \in X$ under this map is a subset of X. Let $E=\{x \in X \mid x \notin f(x)\}$. By definition of the set E, any element $x \in X$ belongs to E if and only if it does not belong to $f(x)$. As a consequence, $E \neq f(x)$ for all $x \in X$. Hence the map f is not onto. In particular, it is not bijective.

