Sample problems for Test 2

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Prove the Chain Rule: if a function f is differentiable at a point c and a function g is differentiable at f(c), then the composition $g \circ f$ is differentiable at c and $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Problem 2 (25 pts.) Find the following limits of functions:

(i) $\lim_{x \to 0} (1+x)^{1/x}$, (ii) $\lim_{x \to +\infty} (1+x)^{1/x}$, (iii) $\lim_{x \to 0+} x^x$.

Problem 3 (20 pts.) Find the limit of a sequence

$$x_n = \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}, \quad n = 1, 2, \dots,$$

where k is a natural number.

Problem 4 (25 pts.) Find indefinite integrals and evaluate definite integrals:

(i)
$$\int \frac{x^2}{1-x} dx$$
, (ii) $\int_0^{\pi} \sin^2(2x) dx$, (iii) $\int \log^3 x dx$,
(iv) $\int_0^{1/2} \frac{x}{\sqrt{1-x^2}} dx$, (v) $\int_0^1 \frac{1}{\sqrt{4-x^2}} dx$.

Bonus Problem 5 (15 pts.) Suppose that a function $p : \mathbb{R} \to \mathbb{R}$ is locally a polynomial, which means that for every $c \in \mathbb{R}$ there exists $\varepsilon > 0$ such that p coincides with a polynomial on the interval $(c - \varepsilon, c + \varepsilon)$. Prove that p is a polynomial.

Bonus Problem 6 (15 pts.) Show that a function

$$f(x) = \begin{cases} \exp\left(-\frac{1}{1-x^2}\right) & \text{if } |x| < 1, \\ 0 & \text{if } |x| \ge 1 \end{cases}$$

is infinitely differentiable on \mathbb{R} .