Sample problems for Test 2: Solutions

Any problem may be altered or replaced by a different one!

Problem 1 (20 pts.) Prove the Chain Rule: if a function f is differentiable at a point c and a function g is differentiable at $f(c)$, then the composition $g \circ f$ is differentiable at c and $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Since the function f is differentiable at the point c, the domain of f contains an open interval $I_{0}=\left(c-\delta_{0}, c+\delta_{0}\right)$ for some $\delta_{0}>0$. Since g is differentiable at $f(c)$, the domain of g contains an open interval $J=\left(f(c)-\varepsilon_{0}, f(c)+\varepsilon_{0}\right)$ for some $\varepsilon_{0}>0$. The differentiability of f at c implies that f is continuous at that point. Hence there exists $\delta_{1} \in\left(0, \delta_{0}\right)$ such that $|f(x)-f(c)|<\varepsilon_{0}$ whenever $|x-c|<\delta_{1}$. Then the composition $g \circ f$ is well defined on the interval $I_{1}=\left(c-\delta_{1}, c+\delta_{1}\right)$. Consider a set $E=\left\{x \in I_{1} \mid f(x) \neq f(c)\right\}$. For any $x \in E$,

$$
\frac{(g \circ f)(x)-(g \circ f)(c)}{x-c}=\frac{g(f(x))-g(f(c))}{f(x)-f(c)} \cdot \frac{f(x)-f(c)}{x-c} .
$$

As $x \rightarrow c$ within the subset E, we have $f(x) \rightarrow f(c)$ while $f(x) \neq f(c)$. Therefore

$$
\lim _{\substack{x \rightarrow c \\ x \in E}} \frac{g(f(x))-g(f(c))}{f(x)-f(c)}=\lim _{y \rightarrow f(c)} \frac{g(y)-g(f(c))}{y-f(c)}=g^{\prime}(f(c)) .
$$

Consequently,

$$
\lim _{\substack{x \rightarrow c \\ x \in E}} \frac{(g \circ f)(x)-(g \circ f)(c)}{x-c}=g^{\prime}(f(c)) \cdot f^{\prime}(c) .
$$

In the case $f(x) \neq f(c)$ for all x in a sufficiently small punctured neighborhood of c, the restriction $x \in E$ in the above limit is redundant and we are done. Otherwise we also need to consider the limit as $x \rightarrow c$ within the complement of E. Notice that $g(f(x))-g(f(c))=f(x)-f(c)=0$ for all $x \notin E$. Hence

$$
\lim _{\substack{x \rightarrow c \\ x \notin E}} \frac{(g \circ f)(x)-(g \circ f)(c)}{x-c}=\lim _{\substack{x \rightarrow c \\ x \notin E}} \frac{f(x)-f(c)}{x-c}=0 .
$$

In particular, we have $f^{\prime}(c)=0$ in this case so that

$$
\lim _{\substack{x \rightarrow c \\ x \notin E}} \frac{(g \circ f)(x)-(g \circ f)(c)}{x-c}=g^{\prime}(f(c)) \cdot f^{\prime}(c) .
$$

Problem 2 (25 pts.) Find the following limits of functions:
(i) $\lim _{x \rightarrow 0}(1+x)^{1 / x}$,
(ii) $\lim _{x \rightarrow+\infty}(1+x)^{1 / x}$,
(iii) $\lim _{x \rightarrow 0+} x^{x}$.

The function $f(x)=(1+x)^{1 / x}$ is well defined on $(-1,0) \cup(0, \infty)$. Since $f(x)>0$ for all $x>-1$, $x \neq 0$, a function $g(x)=\log f(x)$ is well defined on $(-1,0) \cup(0, \infty)$ as well. For any $x>-1, x \neq 0$, we have $g(x)=\log (1+x)^{1 / x}=x^{-1} \log (1+x)$. Hence $g=h_{1} / h_{2}$, where the functions $h_{1}(x)=\log (1+x)$ and $h_{2}(x)=x$ are continuously differentiable on $(-1, \infty)$. Since $h_{1}(0)=h_{2}(0)=0$, it follows that $\lim _{x \rightarrow 0} h_{1}(x)=\lim _{x \rightarrow 0} h_{2}(x)=0$. By l'Hôpital's Rule,

$$
\lim _{x \rightarrow 0} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow 0} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}
$$

assuming the latter limit exists. Since $h_{1}^{\prime}(0)=\left.(1+x)^{-1}\right|_{x=0}=1$ and $h_{2}^{\prime}(0)=1$, we obtain

$$
\lim _{x \rightarrow 0} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow 0} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}=\frac{\lim _{x \rightarrow 0} h_{1}^{\prime}(x)}{\lim _{x \rightarrow 0} h_{2}^{\prime}(x)}=\frac{1}{1}=1
$$

Further, $\lim _{x \rightarrow+\infty} h_{1}(x)=\lim _{x \rightarrow+\infty} h_{2}(x)=+\infty$. At the same time, $h_{1}^{\prime}(x)=(1+x)^{-1} \rightarrow 0$ as $x \rightarrow+\infty$ while h_{2}^{\prime} is identically 1 . Using l'Hôpital's Rule and a limit theorem, we obtain

$$
\lim _{x \rightarrow+\infty} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow+\infty} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}=\frac{\lim _{x \rightarrow+\infty} h_{1}^{\prime}(x)}{\lim _{x \rightarrow+\infty} h_{2}^{\prime}(x)}=\frac{0}{1}=0 .
$$

Since $f=e^{g}$, a composition of g with a continuous function, it follows that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{g(x)}=\exp \left(\lim _{x \rightarrow 0} g(x)\right)=e^{1}=e, \quad \lim _{x \rightarrow+\infty} f(x)=\exp \left(\lim _{x \rightarrow+\infty} g(x)\right)=e^{0}=1
$$

Now let us consider a function $F(x)=x^{x}, x>0$. Since F takes positive values, a function $G(x)=\log F(x)$ is well defined on $(0, \infty)$. We have $G(x)=\log \left(x^{x}\right)=x \log x$ for all $x>0$ so that $G=H_{1} / H_{2}$, where $H_{1}(x)=\log x$ and $H_{2}(x)=x^{-1}$ are differentiable functions on $(0, \infty)$. We observe that $\lim _{x \rightarrow 0+} H_{1}(x)=-\infty$ and $\lim _{x \rightarrow 0+} H_{2}(x)=+\infty$. By l'Hôpital's Rule,

$$
\lim _{x \rightarrow 0+} \frac{H_{1}(x)}{H_{2}(x)}=\lim _{x \rightarrow 0+} \frac{H_{1}^{\prime}(x)}{H_{2}^{\prime}(x)}=\lim _{x \rightarrow 0+} \frac{(\log x)^{\prime}}{\left(x^{-1}\right)^{\prime}}=\lim _{x \rightarrow 0+} \frac{x^{-1}}{-x^{-2}}=\lim _{x \rightarrow 0+}(-x)=0 .
$$

Consequently,

$$
\lim _{x \rightarrow 0+} F(x)=\lim _{x \rightarrow 0+} e^{G(x)}=\exp \left(\lim _{x \rightarrow 0+} G(x)\right)=e^{0}=1
$$

Problem 3 (20 pts .) Find the limit of a sequence

$$
x_{n}=\frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k+1}}, \quad n=1,2, \ldots
$$

where k is a natural number.
The general element of the sequence can be represented as

$$
x_{n}=\frac{1^{k}+2^{k}+\cdots+n^{k}}{n^{k}} \cdot \frac{1}{n}=\left(\frac{1}{n}\right)^{k} \frac{1}{n}+\left(\frac{2}{n}\right)^{k} \frac{1}{n}+\cdots+\left(\frac{n}{n}\right)^{k} \frac{1}{n},
$$

which shows that x_{n} is a Riemann sum of the function $f(x)=x^{k}$ on the interval $[0,1]$ that corresponds to the partition $P_{n}=\{0,1 / n, 2 / n, \ldots,(n-1) / n, 1\}$ and samples $t_{j}=j / n, j=1,2, \ldots, n$. The norm of the partition is $\left\|P_{n}\right\|=1 / n$. Since $\left\|P_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$ and the function f is integrable on $[0,1]$, the Riemann sums x_{n} converge to the integral:

$$
\lim _{n \rightarrow \infty} x_{n}=\int_{0}^{1} x^{k} d x=\left.\frac{x^{k+1}}{k+1}\right|_{x=0} ^{1}=\frac{1}{k+1} .
$$

Problem 4 (25 pts .) Find indefinite integrals and evaluate definite integrals:
(i) $\int \frac{x^{2}}{1-x} d x$,
(ii) $\int_{0}^{\pi} \sin ^{2}(2 x) d x$,
(iii) $\int \log ^{3} x d x$,
(iv) $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$,
(v) $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$.

To find the indefinite integral of a rational function $y(x)=x^{2} /(1-x)$, we expand it into the sum of a polynomial and a simple fraction:

$$
\frac{x^{2}}{1-x}=\frac{x^{2}-1+1}{1-x}=\frac{x^{2}-1}{1-x}+\frac{1}{1-x}=\frac{(x-1)(x+1)}{1-x}+\frac{1}{1-x}=-x-1-\frac{1}{x-1} .
$$

Since the domain of the function y is $(-\infty, 1) \cup(1, \infty)$, the indefinite integral has different representations on the intervals $(-\infty, 1)$ and $(1, \infty)$:

$$
\int \frac{x^{2}}{1-x} d x=\int\left(-x-1-\frac{1}{x-1}\right) d x=\left\{\begin{array}{l}
-x^{2} / 2-x-\log (1-x)+C_{1}, x<1 \\
-x^{2} / 2-x-\log (x-1)+C_{2}, x>1
\end{array}\right.
$$

To integrate the function $y(x)=\sin ^{2}(2 x)$, we use a trigonometric formula $1-\cos (2 \alpha)=2 \sin ^{2} \alpha$ and a new variable $u=4 x$:

$$
\begin{gathered}
\int_{0}^{\pi} \sin ^{2}(2 x) d x=\int_{0}^{\pi} \frac{1-\cos (4 x)}{2} d x=\int_{0}^{\pi} \frac{1-\cos (4 x)}{8} d(4 x) \\
=\int_{0}^{4 \pi} \frac{1-\cos u}{8} d u=\left.\frac{u-\sin u}{8}\right|_{u=0} ^{4 \pi}=\frac{\pi}{2}
\end{gathered}
$$

To find the antiderivative of the function $y(x)=\log ^{3} x$, we integrate by parts three times:

$$
\begin{gathered}
\int \log ^{3} x d x=x \log ^{3} x-\int x d\left(\log ^{3} x\right)=x \log ^{3} x-\int x\left(\log ^{3} x\right)^{\prime} d x=x \log ^{3} x-\int 3 \log ^{2} x d x \\
=x \log ^{3} x-3 x \log ^{2} x+\int x d\left(3 \log ^{2} x\right)=x \log ^{3} x-3 x \log ^{2} x+\int x\left(3 \log ^{2} x\right)^{\prime} d x \\
=x \log ^{3} x-3 x \log ^{2} x+\int 6 \log x d x=x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int x d(6 \log x) \\
=x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int x(6 \log x)^{\prime} d x=x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int 6 d x
\end{gathered}
$$

$$
=x \log ^{3} x-3 x \log ^{2} x+6 x \log x-6 x+C
$$

To integrate the function $y(x)=x / \sqrt{1-x^{2}}$, we use a new variable $u=1-x^{2}$:

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int_{0}^{1 / 2} \frac{\left(1-x^{2}\right)^{\prime}}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d\left(1-x^{2}\right) \\
=-\frac{1}{2} \int_{1}^{3 / 4} \frac{1}{\sqrt{u}} d u=\int_{3 / 4}^{1} \frac{1}{2 \sqrt{u}} d u=\left.\sqrt{u}\right|_{u=3 / 4} ^{1}=1-\frac{\sqrt{3}}{2}
\end{gathered}
$$

To integrate the function $y(x)=1 / \sqrt{4-x^{2}}$, we use a substitution $x=2 \sin t$ (observe that x changes from 0 to 1 when t changes from 0 to $\pi / 6)$:

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x=\int_{0}^{\pi / 6} \frac{1}{\sqrt{4-(2 \sin t)^{2}}} d(2 \sin t)=\int_{0}^{\pi / 6} \frac{(2 \sin t)^{\prime}}{\sqrt{4-4 \sin ^{2} t}} d t \\
=\int_{0}^{\pi / 6} \frac{2 \cos t}{\sqrt{4 \cos ^{2} t}} d t=\int_{0}^{\pi / 6} \frac{2 \cos t}{2 \cos t} d t=\int_{0}^{\pi / 6} 1 d x=\frac{\pi}{6}
\end{gathered}
$$

Bonus Problem 5 (15 pts.) Suppose that a function $p: \mathbb{R} \rightarrow \mathbb{R}$ is locally a polynomial, which means that for every $c \in \mathbb{R}$ there exists $\varepsilon>0$ such that p coincides with a polynomial on the interval $(c-\varepsilon, c+\varepsilon)$. Prove that p is a polynomial.

For any $c \in \mathbb{R}$ let p_{c} denote a polynomial and ε_{c} denote a positive number such that $p(x)=p_{c}(x)$ for all $x \in\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right)$. We are going to show that $p=p_{0}$ on the entire real line. Consider two sets $E_{+}=\left\{x>0 \mid p(x) \neq p_{0}(x)\right\}$ and $E_{-}=\left\{x<0 \mid p(x) \neq p_{0}(x)\right\}$. Assume that the set E_{+}is not empty. Clearly, E_{+}is bounded below. Hence $d=\inf E_{+}$is a well-defined real number. Note that $E_{+} \subset\left[\varepsilon_{0}, \infty\right)$. Therefore $d \geq \varepsilon_{0}>0$. Observe that $p(x)=p_{0}(x)$ for $x \in(0, d)$ and $p(x)=p_{d}(x)$ for $x \in\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. The interval $(0, d)$ overlaps with the interval $\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. Hence p_{d} coincides with p_{0} on the intersection $(0, d) \cap\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. Equivalently, the difference $p_{d}-p_{0}$ is zero on $(0, d) \cap\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$. Since $p_{d}-p_{0}$ is a polynomial and any nonzero polynomial has only finitely many roots, we conclude that $p_{d}-p_{0}$ is identically 0 . Then the polynomials p_{d} and p_{0} are the same. It follows that $p(x)=p_{0}(x)$ for $x \in\left(0, d+\varepsilon_{d}\right)$ so that $d \neq \inf E_{+}$, a contradiction. Thus $E_{+}=\emptyset$. Similarly, we prove that the set E_{-}is empty as well. Since $E_{+}=E_{-}=\emptyset$, the function p coincides with the polynomial p_{0}.

Bonus Problem 6 (15 pts.) Show that a function

$$
f(x)=\left\{\begin{array}{l}
\exp \left(-\frac{1}{1-x^{2}}\right) \text { if }|x|<1 \\
0 \text { if }|x| \geq 1
\end{array}\right.
$$

is infinitely differentiable on \mathbb{R}.
Consider a function $h: \mathbb{R} \rightarrow \mathbb{R}$ defined by $h(x)=e^{-1 / x}$ for $x>0$ and $h(x)=0$ for $x \leq 0$. It is easy to verify that $f(x)=h(2+2 x) h(2-2 x)$ for all $x \in \mathbb{R}$. Since the set $C^{\infty}(\mathbb{R})$ of infinitely
differentiable functions is closed under multiplication and composition of functions, it is enough to prove that $h \in C^{\infty}(\mathbb{R})$.

Obviously, the function h is infinitely differentiable on $(-\infty, 0)$ and on $(0, \infty)$. Moreover, all derivatives on $(-\infty, 0)$ are identically zero. Let us prove that for any integer $n \geq 0$ there exists a polynomial p_{n} such that $h^{(n)}(x)=p_{n}(x) x^{-2 n} e^{-1 / x}$ for all $x>0$, where $h^{(n)}$ is the n-th derivative of h for $n>0$ and $h^{(0)}=h$. The proof is by induction on n. The base case $n=0$ is trivial, with $p_{0}=1$. Now assume that the above representation holds for some integer $n \geq 0$. Then

$$
\begin{aligned}
h^{(n+1)}(x) & =\left(h^{(n)}(x)\right)^{\prime}=\left(p_{n}(x) x^{-2 n} e^{-1 / x}\right)^{\prime} \\
& =p_{n}^{\prime}(x) x^{-2 n} e^{-1 / x}+p_{n}(x)\left(x^{-2 n}\right)^{\prime} e^{-1 / x}+p_{n}(x) x^{-2 n}\left(e^{-1 / x}\right)^{\prime} \\
& =p_{n}^{\prime}(x) x^{-2 n} e^{-1 / x}+p_{n}(x)(-2 n) x^{-2 n-1} e^{-1 / x}+p_{n}(x) x^{-2 n} e^{-1 / x} x^{-2} \\
& =p_{n+1}(x) x^{-2(n+1)} e^{-1 / x},
\end{aligned}
$$

where $p_{n+1}(x)=p_{n}^{\prime}(x) x^{2}-2 n p_{n}(x) x+p_{n}(x)$ is a polynomial. Since $t^{k} / e^{t} \rightarrow 0$ as $t \rightarrow+\infty$ for any $k>0$ and $1 / x \rightarrow+\infty$ as $x \rightarrow 0+$, we obtain that $x^{-k} e^{-1 / x} \rightarrow 0$ as $x \rightarrow 0+$ for any $k>0$. Then it follows from the above that $h^{(n)}(x) / x \rightarrow 0$ as $x \rightarrow 0+$ for any $n \geq 0$. Now it easily follows by induction on $n \in \mathbb{N}$ that the function h is n times differentiable at 0 and $h^{(n)}(0)=0$. Thus $h \in C^{\infty}(\mathbb{R})$.

