Challenges

Challenge \#1 (10 pts.)

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an infinitely differentiable function. Suppose that for any point $x \in \mathbb{R}$ there exists a derivative of f that vanishes at x :

$$
f^{(n)}(x)=0 \text { for some } n \geq 1
$$

Prove that f is a polynomial.
Remark. A polynomial can be uniquely characterized as an infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{(n)}(x) \equiv 0$ (identically zero) for some $n \geq 1$.

Challenges

Challenge \#2 (1 pt., expired on January 24)
Construct a strict linear order \prec on the set \mathbb{C} of complex numbers that satisfies Axiom OA:
$a \prec b$ implies $a+c \prec b+c$ for all $a, b, c \in \mathbb{C}$.
($+\mathbf{1} \mathbf{~ p t}$. if you construct infinitely many different orders)

Challenge \#3 (2 pts., expired on January 24) Construct a strict linear order \prec on the set $\mathbb{R}(x)$ of rational functions in variable x with real coefficients that makes $\mathbb{R}(x)$ into an ordered field.
(+1 pt. if you construct two different orders)

Challenges

A set $E \subset \mathbb{R}$ is called an interval if with any two elements it contains all elements of \mathbb{R} that lie between them. To be precise, $a, b \in E$ and $a<c<b$ imply $c \in E$ for all $a, b, c \in \mathbb{R}$.

Challenge \#4 (2 pts.)

Prove the following statements.
(i) If E is a bounded interval that consists of more than one point, then there exist $a, b \in \mathbb{R}, a<b$, such that $E=(a, b)$ or $[a, b)$ or $(a, b]$ or $[a, b]$.
(ii) If E is an interval that is neither bounded above nor bounded below, then $E=\mathbb{R}$.

Challenges

Consider the field $\mathbb{R}(x)$ of rational functions with the strict linear order defined by $f \prec g$ if $f(x)<g(x)$ for all $x>M$, where M is a constant depending on f and g.

A set $E \subset \mathbb{R}(x)$ is called an interval if with any two functions it contains all functions in $\mathbb{R}(x)$ that lie between them. To be precise, $f, g \in E$ and $f \prec h \prec g$ imply $h \in E$ for all $f, g, h \in \mathbb{R}(x)$.

Challenge \#5 (2 pts.)

Find a nonempty bounded interval in $\mathbb{R}(x)$ that is not of the form $(a, b),[a, b),(a, b]$ or $[a, b]$.

Challenges

Challenge \#6 ($\mathbf{2} \mathbf{~ p t s .)}$
Prove that the set $\mathbb{R} \times \mathbb{R}$ is of the same cardinality as \mathbb{R}.
Challenge \#7 (3 pts.)
Let $\mathcal{P}(\mathbb{N})$ denote the set of all subsets of \mathbb{N}. Prove that $\mathcal{P}(\mathbb{N})$ is of the same cardinality as \mathbb{R}.

Challenge \#8
Let $\mathcal{F}(\mathbb{R})$ denote the set of all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ and $C(\mathbb{R})$ denote the subset of continuous functions.
(5 pts.) Prove that $C(\mathbb{R})$ is of the same cardinality as \mathbb{R}.
(2 pts.) Prove that $\mathcal{F}(\mathbb{R})$ is not of the same cardinality as \mathbb{R}.

Challenges

Challenge \#9

All problems are from Thomson/Bruckner/Bruckner.
Section 2.14: 2.14.14, 2.14.15, 2.14.18, 2.14.19
Each problem is worth 2 pts.

Challenges

Challenge \#10

All problems are from Thomson/Bruckner/Bruckner.
Section 2.11: 2.11.12
Section 2.13: 2.13.16, 2.13.17
Each problem is worth 3 pts.

Challenges

Challenge \#11

All problems are from Thomson/Bruckner/Bruckner.
Section 3.12: 3.12.2 (2 pts.), 3.12.9 (5 pts.), 3.12.15 (3 pts.)

Challenges

Challenge \#12

(4 pts.) Suppose $E \subset \mathbb{R}$ is a nonempty closed set. Prove that there exists a finite or countable subset $S \subset E$ such that $E=\bar{S}$ (that is, S is dense in E).
(3 pts.) Given a sequence $\left\{x_{n}\right\}$ of real numbers, let E be the set of all its limit points (i.e., limits of convergent subsequences). Prove that E is a closed set.
(4 pts.) Suppose $E \subset \mathbb{R}$ is a closed set. Prove that there exists a sequence $\left\{x_{n}\right\}$ such that the set of all its limit points is E.

Challenges

Challenge \#13

(2 pts.) Construct a function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at all integer points and discontinuous at all non-integer points.
(5 pts.) Given a function $f: \mathbb{R} \rightarrow \mathbb{R}$, let S be the set of all points at which f is continuous. Prove that S is a countable intersection of open sets.
(5 pts.) Prove that there exists no function $f: \mathbb{R} \rightarrow \mathbb{R}$ that is continuous at all rational points and discontinuous at all irrational points.
(Hint: show that \mathbb{Q} is not a countable intersection of open sets.)

Challenges

Challenge \#14

(3 pts.) Prove that the Riemann function

$$
R(x)=\left\{\begin{array}{cl}
1 / q & \text { if } x=p / q, \text { a reduced fraction, } q>0, \\
0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}
\end{array}\right.
$$

is not differentiable at any point.
(5 pts.) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function such that $f(x)>0$ for all $x \in \mathbb{Q}$ and $f(x)=0$ for all $x \notin \mathbb{Q}$. Prove that f can not be differentiable at every irrational point.
(10 pts.) Let $R: \mathbb{R} \rightarrow \mathbb{R}$ be the Riemann function. Prove that the function R^{3} is differentiable at some irrational points.

Challenges

Challenge \#15

(5 pts.) Determine all differentiable functions
$f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{\prime}\left(\frac{x+y}{2}\right)=\frac{f(x)-f(y)}{x-y}$ whenever $x \neq y$. Prove your answer.
(10 pts.) Construct an infinitely differentiable function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $0 \leq f(x) \leq 1$ for all $x \in \mathbb{R}, f(x)=1$ if $|x| \leq 1$, and $f(x)=0$ if $|x| \geq 2$.

