Challenge #1 (10 pts.)

Let $f : \mathbb{R} \to \mathbb{R}$ be an infinitely differentiable function. Suppose that for any point $x \in \mathbb{R}$ there exists a derivative of f that vanishes at x:

$$f^{(n)}(x) = 0$$
 for some $n \ge 1$.

Prove that f is a polynomial.

Remark. A polynomial can be uniquely characterized as an infinitely differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that $f^{(n)}(x) \equiv 0$ (identically zero) for some $n \geq 1$.

Challenge #2 (1 pt., expired on January 24) Construct a strict linear order \prec on the set \mathbb{C} of complex numbers that satisfies Axiom OA: $a \prec b$ implies $a + c \prec b + c$ for all $a, b, c \in \mathbb{C}$. (+1 pt. if you construct infinitely many different orders)

Challenge #3 (2 pts., expired on January 24) Construct a strict linear order \prec on the set $\mathbb{R}(x)$ of rational functions in variable x with real coefficients that makes $\mathbb{R}(x)$ into an ordered field.

(+1 pt. if you construct two different orders)

A set $E \subset \mathbb{R}$ is called an interval if with any two elements it contains all elements of \mathbb{R} that lie between them. To be precise, $a, b \in E$ and a < c < b imply $c \in E$ for all $a, b, c \in \mathbb{R}$.

Challenge #4 (2 pts.)

Prove the following statements.

(i) If *E* is a bounded interval that consists of more than one point, then there exist $a, b \in \mathbb{R}$, a < b, such that E = (a, b) or [a, b) or (a, b] or [a, b]. (ii) If *E* is an interval that is neither bounded above nor bounded below, then $E = \mathbb{R}$.

Consider the field $\mathbb{R}(x)$ of rational functions with the strict linear order defined by $f \prec g$ if f(x) < g(x) for all x > M, where M is a constant depending on f and g.

A set $E \subset \mathbb{R}(x)$ is called an interval if with any two functions it contains all functions in $\mathbb{R}(x)$ that lie between them. To be precise, $f, g \in E$ and $f \prec h \prec g$ imply $h \in E$ for all $f, g, h \in \mathbb{R}(x)$.

Challenge #5 (2 pts.)

Find a nonempty bounded interval in $\mathbb{R}(x)$ that is not of the form (a, b), [a, b), (a, b] or [a, b].

Challenge #6 (2 pts.)

Prove that the set $\mathbb{R} \times \mathbb{R}$ is of the same cardinality as \mathbb{R} .

Challenge #7 (3 pts.)

Let $\mathcal{P}(\mathbb{N})$ denote the set of all subsets of \mathbb{N} . Prove that $\mathcal{P}(\mathbb{N})$ is of the same cardinality as \mathbb{R} .

Challenge #8

Let $\mathcal{F}(\mathbb{R})$ denote the set of all functions $f : \mathbb{R} \to \mathbb{R}$ and $C(\mathbb{R})$ denote the subset of continuous functions.

(5 pts.) Prove that $C(\mathbb{R})$ is of the same cardinality as \mathbb{R} .

(2 pts.) Prove that $\mathcal{F}(\mathbb{R})$ is not of the same cardinality as \mathbb{R} .

Challenge #9

All problems are from Thomson/Bruckner/Bruckner. Section 2.14: 2.14.14, 2.14.15, 2.14.18, 2.14.19 Each problem is worth **2 pts.**

Challenge #10

All problems are from Thomson/Bruckner/Bruckner. Section 2.11: 2.11.12 Section 2.13: 2.13.16, 2.13.17 Each problem is worth **3 pts.**

Challenge #11

All problems are from Thomson/Bruckner/Bruckner. Section 3.12: 3.12.2 (2 pts.), 3.12.9 (5 pts.), 3.12.15 (3 pts.)

Challenge #12

(4 pts.) Suppose $E \subset \mathbb{R}$ is a nonempty closed set. Prove that there exists a finite or countable subset $S \subset E$ such that $E = \overline{S}$ (that is, S is dense in E).

(3 pts.) Given a sequence $\{x_n\}$ of real numbers, let *E* be the set of all its limit points (i.e., limits of convergent subsequences). Prove that *E* is a closed set.

(4 pts.) Suppose $E \subset \mathbb{R}$ is a closed set. Prove that there exists a sequence $\{x_n\}$ such that the set of all its limit points is E.

Challenge #13

(2 pts.) Construct a function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at all integer points and discontinuous at all non-integer points.

(5 pts.) Given a function $f : \mathbb{R} \to \mathbb{R}$, let S be the set of all points at which f is continuous. Prove that S is a countable intersection of open sets.

(5 pts.) Prove that there exists no function $f : \mathbb{R} \to \mathbb{R}$ that is continuous at all rational points and discontinuous at all irrational points. (Hint: show that \mathbb{Q} is not a countable intersection of open sets.)

Challenge #14

(3 pts.) Prove that the Riemann function

 $R(x) = \left\{egin{array}{ccc} 1/q & ext{if } x = p/q, \ ext{a reduced fraction, } q > 0, \ 0 & ext{if } x \in \mathbb{R} \setminus \mathbb{Q} \end{array}
ight.$

is not differentiable at any point.

(5 pts.) Suppose $f : \mathbb{R} \to \mathbb{R}$ is a function such that f(x) > 0 for all $x \in \mathbb{Q}$ and f(x) = 0 for all $x \notin \mathbb{Q}$. Prove that f can not be differentiable at every irrational point.

(10 pts.) Let $R : \mathbb{R} \to \mathbb{R}$ be the Riemann function. Prove that the function R^3 is differentiable at some irrational points.

Challenge #15

(5 pts.) Determine all differentiable functions $f : \mathbb{R} \to \mathbb{R}$ such that $f'\left(\frac{x+y}{2}\right) = \frac{f(x) - f(y)}{x-y}$ whenever $x \neq y$. Prove your answer.

whenever $x \neq y$. Prove your answer.

(10 pts.) Construct an infinitely differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that $0 \le f(x) \le 1$ for all $x \in \mathbb{R}$, f(x) = 1 if $|x| \le 1$, and f(x) = 0 if $|x| \ge 2$.