MATH 409
 Advanced Calculus I

Lecture 3:
Supremum and infimum.
Completeness axiom.

Bounds

Suppose X is a set with a strict linear order \prec.
Definition. Let $E \subset X$ be a nonempty set and $M \in X$. We say that M is an upper bound of the set E if $x \preceq M$ for all $x \in E$. Similarly, M is a lower bound of the set E if $x \succeq M$ for all $x \in E$.
We say that the set E is bounded above if it admits an upper bound and bounded below if it admits a lower bound. The set E is called bounded if it is bounded above and below.

An element $M \in X$ is called the maximum of a set $E \subset X$ and denoted $\max E$ if (i) M is an upper bound of E and (ii) M belongs to E.
Similarly, M is called the minimum of the set E and denoted $\min E$ if (i) M is a lower bound of E and (ii) M belongs to E.

Supremum and infimum

Definition. An element $M \in X$ is called the supremum (or the least upper bound) of the set E and denoted $\sup E$ if (i) M is an upper bound of E and (ii) $M \preceq M_{+}$for any upper bound M_{+}of E.
Similarly, M is called the infimum (or the greatest lower bound) of the set E and denoted $\inf E$ if (i) M is a lower bound of E and (ii) $M \succeq M_{-}$for any lower bound M_{-}of E.

If $\max E$ exists then it is also $\sup E$. However $\sup E$ may exist even if $\max E$ does not. Similarly, $\inf E=\min E$ whenever $\min E$ exists.

Examples. $\bullet X=\mathbb{R}, E=[0,1]$. $\max E=\sup E=1, \min E=\inf E=0$.

- $X=\mathbb{R}, E=(0,1)$.
$\sup E=1, \inf E=0, \max E$ and $\min E$ do not exist.

Axioms of real numbers

Definition. The set \mathbb{R} of real numbers is a set satisfying the following postulates:
Postulate 1. \mathbb{R} is a field.
Postulate 2. There is a strict linear order $<$ on \mathbb{R} that makes it into an ordered field.

Postulate 3 (Completeness Axiom).

If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then E has a supremum.

Theorem 1 Suppose X and Y are nonempty subsets of \mathbb{R} such that $a \leq b$ for all $a \in X$ and $b \in Y$. Then there exists $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in X$ and $c \leq b$ for all $b \in Y$.

Proof: The set X is bounded above as any element of Y is an upper bound of X. By Completeness Axiom, sup X exists. We have $a \leq \sup X$ for all $a \in X$ since $\sup X$ is an upper bound of X. Besides, $\sup X \leq b$ for any $b \in Y$ since b is an upper bound of X while $\sup X$ is the least upper bound.

Theorem 2 If a nonempty subset $E \subset \mathbb{R}$ is bounded below, then E has an infimum.

Proof: Let X denote the set of all lower bounds of E. Then $a \leq b$ for all $a \in X$ and $b \in E$. Since E is bounded below, the set X is not empty. By Theorem 1 , there exists $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in X$ and $c \leq b$ for all $b \in E$. That is, c is a lower bound of E and an upper bound of X. It follows that $c=\inf E$.

Dedekind cuts

Suppose X is a set with a strict linear order \prec.
Definition. A Dedekind cut of X is a partition $X=L \cup R$, where L and R are disjoint sets such that $x \prec y$ for all $x \in L$ and $y \in R$.
For any Dedekind cut, there are 4 possibilities.
Case 1. $\max L$ exists while $\min R$ does not. In this case, $L=\left\{x \in X \mid x \preceq x_{0}\right\}$ and $R=\left\{x \in X \mid x \succ x_{0}\right\}$, where $x_{0}=\max L$.
Example. $X=\mathbb{R}, L=(-\infty, 0], R=(0, \infty)$.
Case 2. $\min R$ exists while $\max L$ does not. In this case, $L=\left\{x \in X \mid x \prec y_{0}\right\}$ and $R=\left\{x \in X \mid x \succeq y_{0}\right\}$, where $y_{0}=\min R$.
Example. $X=\mathbb{R}, L=(-\infty, 0), R=[0, \infty)$.

Case 3. Both $\max L$ and $\min R$ exist.
In this case, $L=\left\{x \in X \mid x \preceq x_{0}\right\}$ and
$R=\left\{x \in X \mid x \succeq y_{0}\right\}$, where $x_{0}=\max L, y_{0}=\min R$.
Example. $X=(-\infty, 0] \cup[1, \infty), L=(-\infty, 0], R=[1, \infty)$.
Case 4. Neither $\max L$ nor $\min R$ exists.
Examples. $-X=\mathbb{R} \backslash\{0\}, L=(-\infty, 0), R=(0, \infty)$.

- $X=\mathbb{Q}, L=\left\{x \in \mathbb{Q} \mid x \leq 0\right.$ or $\left.x^{2}<2\right\}$,
$R=\left\{x \in \mathbb{Q} \mid x>0\right.$ and $\left.x^{2}>2\right\}$.
Cases 1 and 2 are normal cuts. Case 3 shows a "gap" in the order (from x_{0} to y_{0}). Case 4 shows a "hole" in the order (between L and R).
Case 3 is not possible for ordered fields as $x_{0} \prec \frac{1}{2}\left(x_{0}+y_{0}\right) \prec y_{0}$. Case 4 is ruled out by the Completeness Axiom.

Remark. Richard Dedekind used his cuts to construct real numbers from the rationals.

Natural, integer, and rational numbers

Postulate 1 guarantees that \mathbb{R} contains numbers 0 and 1 . Then we can define natural numbers $2=1+1,3=2+1$, $4=3+1$, and so on... It was proved in the previous lecture that $0<1$. Repeatedly adding 1 to both sides of this inequality, we obtain $0<1<2<3<\ldots$ In particular, all these numbers are distinct.

However the entire set of natural numbers can only be defined in an implicit way.
Definition. A set $E \subset \mathbb{R}$ is called inductive if $1 \in E$ and, for any real number $x, x \in E$ implies $x+1 \in E$. The set \mathbb{N} of natural numbers is the smallest inductive subset of \mathbb{R} (namely, it is the intersection of all inductive subsets of \mathbb{R}).
The set of integers is defined as $\mathbb{Z}=-\mathbb{N} \cup\{0\} \cup \mathbb{N}$. The set of rationals is defined as $\mathbb{Q}=\{m / n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$.

Archimedean Principle

Theorem (Archimedean Principle) For any real number $\varepsilon>0$ there exists a natural number n such that $n \varepsilon>1$.
Remark. Archimedean Principle means that \mathbb{R} contains no infinitesimal (i.e., infinitely small) numbers other than 0 .
Proof: In the case $\varepsilon>1$, we can take $n=1$. Now assume $\varepsilon \leq 1$. Let E be the set of all natural numbers n such that $n \varepsilon \leq 1$. Observe that E is nonempty $(1 \in E)$ and bounded above ($1 / \varepsilon$ is an upper bound). By Completeness Axiom, $m=\sup E$ exists. By definition of $\sup E$, there exists $n \in E$ such that $n>m-1 / 2$ (as otherwise $m-1 / 2$ would be an upper bound for E). Then $n+1$ is a natural number and $n+1>m+1 / 2>m$. It follows that $n+1$ is not in E. Consequently, $(n+1) \varepsilon>1$.

Corollary For any $a, b>0$ there exists a natural number n such that na $>b$.

