MATH 409 Advanced Calculus I Lecture 3: Supremum and infimum. Completeness axiom.

Bounds

Suppose X is a set with a strict linear order \prec .

Definition. Let $E \subset X$ be a nonempty set and $M \in X$. We say that M is an **upper bound** of the set E if $x \leq M$ for all $x \in E$. Similarly, M is a **lower bound** of the set E if $x \geq M$ for all $x \in E$.

We say that the set E is **bounded above** if it admits an upper bound and **bounded below** if it admits a lower bound. The set E is called **bounded** if it is bounded above and below.

An element $M \in X$ is called the **maximum** of a set $E \subset X$ and denoted max E if (i) M is an upper bound of E and (ii) M belongs to E.

Similarly, M is called the **minimum** of the set E and denoted min E if (i) M is a lower bound of E and (ii) M belongs to E.

Supremum and infimum

Definition. An element $M \in X$ is called the **supremum** (or the **least upper bound**) of the set E and denoted sup E if (i) M is an upper bound of E and (ii) $M \leq M_+$ for any upper bound M_+ of E.

Similarly, M is called the **infimum** (or the **greatest lower bound**) of the set E and denoted inf E if (i) M is a lower bound of E and (ii) $M \succeq M_{-}$ for any lower bound M_{-} of E.

If max E exists then it is also sup E. However sup E may exist even if max E does not. Similarly, inf $E = \min E$ whenever min E exists.

Examples. • $X = \mathbb{R}$, E = [0, 1]. max $E = \sup E = 1$, min $E = \inf E = 0$. • $X = \mathbb{R}$, E = (0, 1). sup E = 1, inf E = 0, max E and min E do not exist.

Axioms of real numbers

Definition. The set \mathbb{R} of real numbers is a set satisfying the following postulates:

Postulate 1. \mathbb{R} is a field.

Postulate 2. There is a strict linear order < on \mathbb{R} that makes it into an ordered field.

Postulate 3 (Completeness Axiom). If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then *E* has a supremum. **Theorem 1** Suppose X and Y are nonempty subsets of \mathbb{R} such that $a \leq b$ for all $a \in X$ and $b \in Y$. Then there exists $c \in \mathbb{R}$ such that $a \leq c$ for all $a \in X$ and $c \leq b$ for all $b \in Y$.

Proof: The set X is bounded above as any element of Y is an upper bound of X. By Completeness Axiom, $\sup X$ exists. We have $a \leq \sup X$ for all $a \in X$ since $\sup X$ is an upper bound of X. Besides, $\sup X \leq b$ for any $b \in Y$ since b is an upper bound of X while $\sup X$ is the least upper bound.

Theorem 2 If a nonempty subset $E \subset \mathbb{R}$ is bounded below, then *E* has an infimum.

Proof: Let X denote the set of all lower bounds of E. Then $a \le b$ for all $a \in X$ and $b \in E$. Since E is bounded below, the set X is not empty. By Theorem 1, there exists $c \in \mathbb{R}$ such that $a \le c$ for all $a \in X$ and $c \le b$ for all $b \in E$. That is, c is a lower bound of E and an upper bound of X. It follows that $c = \inf E$.

Dedekind cuts

Suppose X is a set with a strict linear order \prec .

Definition. A **Dedekind cut** of X is a partition $X = L \cup R$, where L and R are disjoint sets such that $x \prec y$ for all $x \in L$ and $y \in R$.

For any Dedekind cut, there are 4 possibilities.

Case 1. max *L* exists while min *R* does not. In this case, $L = \{x \in X \mid x \leq x_0\}$ and $R = \{x \in X \mid x \succ x_0\}$, where $x_0 = \max L$. *Example.* $X = \mathbb{R}$, $L = (-\infty, 0]$, $R = (0, \infty)$.

Case 2. min *R* exists while max *L* does not. In this case, $L = \{x \in X \mid x \prec y_0\}$ and $R = \{x \in X \mid x \succeq y_0\}$, where $y_0 = \min R$. *Example.* $X = \mathbb{R}$, $L = (-\infty, 0)$, $R = [0, \infty)$. **Case 3.** Both max *L* and min *R* exist. In this case, $L = \{x \in X \mid x \leq x_0\}$ and $R = \{x \in X \mid x \geq y_0\}$, where $x_0 = \max L$, $y_0 = \min R$. *Example.* $X = (-\infty, 0] \cup [1, \infty)$, $L = (-\infty, 0]$, $R = [1, \infty)$.

Case 4. Neither max *L* nor min *R* exists.

Examples. •
$$X = \mathbb{R} \setminus \{0\}$$
, $L = (-\infty, 0)$, $R = (0, \infty)$.
• $X = \mathbb{Q}$, $L = \{x \in \mathbb{Q} \mid x \le 0 \text{ or } x^2 < 2\}$,
 $R = \{x \in \mathbb{Q} \mid x > 0 \text{ and } x^2 > 2\}$.

Cases 1 and 2 are normal cuts. Case 3 shows a "gap" in the order (from x_0 to y_0). Case 4 shows a "hole" in the order (between L and R).

Case 3 is not possible for ordered fields as $x_0 \prec \frac{1}{2}(x_0+y_0) \prec y_0$. Case 4 is ruled out by the Completeness Axiom.

Remark. Richard Dedekind used his cuts to construct real numbers from the rationals.

Natural, integer, and rational numbers

Postulate 1 guarantees that $\mathbb R$ contains numbers 0 and 1. Then we can define natural numbers $2=1+1,\ 3=2+1,\ 4=3+1,\ and$ so on... It was proved in the previous lecture that 0<1. Repeatedly adding 1 to both sides of this inequality, we obtain $0<1<2<3<\ldots$ In particular, all these numbers are distinct.

However the entire set of natural numbers can only be defined in an implicit way.

Definition. A set $E \subset \mathbb{R}$ is called **inductive** if $1 \in E$ and, for any real number $x, x \in E$ implies $x + 1 \in E$. The set \mathbb{N} of **natural numbers** is the smallest inductive subset of \mathbb{R} (namely, it is the intersection of all inductive subsets of \mathbb{R}).

The set of **integers** is defined as $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$. The set of **rationals** is defined as $\mathbb{Q} = \{m/n \mid m \in \mathbb{Z}, n \in \mathbb{N}\}$.

Archimedean Principle

Theorem (Archimedean Principle) For any real number $\varepsilon > 0$ there exists a natural number *n* such that $n\varepsilon > 1$.

Remark. Archimedean Principle means that \mathbb{R} contains no **infinitesimal** (i.e., infinitely small) numbers other than 0.

Proof: In the case $\varepsilon > 1$, we can take n = 1. Now assume $\varepsilon \leq 1$. Let E be the set of all natural numbers n such that $n\varepsilon \leq 1$. Observe that E is nonempty $(1 \in E)$ and bounded above $(1/\varepsilon$ is an upper bound). By Completeness Axiom, $m = \sup E$ exists. By definition of $\sup E$, there exists $n \in E$ such that n > m - 1/2 (as otherwise m - 1/2 would be an upper bound for E). Then n + 1 is a natural number and n + 1 > m + 1/2 > m. It follows that n + 1 is not in E. Consequently, $(n + 1)\varepsilon > 1$.

Corollary For any a, b > 0 there exists a natural number *n* such that na > b.