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Advanced Calculus I

Lecture 3:
Supremum and infimum.

Completeness axiom.



Bounds

Suppose X is a set with a strict linear order ≺.

Definition. Let E ⊂ X be a nonempty set and M ∈ X . We
say that M is an upper bound of the set E if x � M for all
x ∈ E . Similarly, M is a lower bound of the set E if x � M

for all x ∈ E .

We say that the set E is bounded above if it admits an
upper bound and bounded below if it admits a lower bound.
The set E is called bounded if it is bounded above and below.

An element M ∈ X is called the maximum of a set E ⊂ X

and denoted maxE if (i) M is an upper bound of E and (ii)
M belongs to E .

Similarly, M is called the minimum of the set E and denoted
minE if (i) M is a lower bound of E and (ii) M belongs to E .



Supremum and infimum

Definition. An element M ∈ X is called the supremum (or
the least upper bound) of the set E and denoted supE if
(i) M is an upper bound of E and (ii) M � M+ for any upper
bound M+ of E .

Similarly, M is called the infimum (or the greatest lower
bound) of the set E and denoted inf E if (i) M is a lower
bound of E and (ii) M � M

−
for any lower bound M

−
of E .

If maxE exists then it is also supE . However supE may
exist even if maxE does not. Similarly, inf E = minE
whenever minE exists.

Examples. • X = R, E = [0, 1].

maxE = supE = 1, minE = inf E = 0.

• X = R, E = (0, 1).

supE = 1, inf E = 0, max E and minE do not exist.



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R

that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E ⊂ R is bounded above,
then E has a supremum.



Theorem 1 Suppose X and Y are nonempty subsets of R
such that a ≤ b for all a ∈ X and b ∈ Y . Then there exists
c ∈ R such that a ≤ c for all a ∈ X and c ≤ b for all b ∈ Y .

Proof: The set X is bounded above as any element of Y is
an upper bound of X . By Completeness Axiom, supX exists.
We have a ≤ supX for all a ∈ X since supX is an upper
bound of X . Besides, supX ≤ b for any b ∈ Y since b is an
upper bound of X while supX is the least upper bound.

Theorem 2 If a nonempty subset E ⊂ R is bounded below,
then E has an infimum.

Proof: Let X denote the set of all lower bounds of E . Then
a ≤ b for all a ∈ X and b ∈ E . Since E is bounded below,
the set X is not empty. By Theorem 1, there exists c ∈ R

such that a ≤ c for all a ∈ X and c ≤ b for all b ∈ E .
That is, c is a lower bound of E and an upper bound of X .
It follows that c = inf E .



Dedekind cuts

Suppose X is a set with a strict linear order ≺.

Definition. A Dedekind cut of X is a partition X = L ∪ R ,
where L and R are disjoint sets such that x ≺ y for all x ∈ L

and y ∈ R .

For any Dedekind cut, there are 4 possibilities.

Case 1. max L exists while minR does not.
In this case, L = {x ∈ X | x � x0} and
R = {x ∈ X | x ≻ x0}, where x0 = max L.

Example. X = R, L = (−∞, 0], R = (0,∞).

Case 2. minR exists while max L does not.
In this case, L = {x ∈ X | x ≺ y0} and
R = {x ∈ X | x � y0}, where y0 = minR .

Example. X = R, L = (−∞, 0), R = [0,∞).



Case 3. Both max L and minR exist.
In this case, L = {x ∈ X | x � x0} and
R = {x ∈ X | x � y0}, where x0 = max L, y0 = minR .

Example. X = (−∞, 0] ∪ [1,∞), L = (−∞, 0], R = [1,∞).

Case 4. Neither max L nor minR exists.

Examples. • X = R \ {0}, L = (−∞, 0), R = (0,∞).
• X = Q, L = {x ∈ Q | x ≤ 0 or x2 < 2},
R = {x ∈ Q | x > 0 and x2 > 2}.

Cases 1 and 2 are normal cuts. Case 3 shows a “gap” in the
order (from x0 to y0). Case 4 shows a “hole” in the order
(between L and R).

Case 3 is not possible for ordered fields as x0 ≺
1

2
(x0+y0) ≺ y0.

Case 4 is ruled out by the Completeness Axiom.

Remark. Richard Dedekind used his cuts to construct real
numbers from the rationals.



Natural, integer, and rational numbers

Postulate 1 guarantees that R contains numbers 0 and 1.
Then we can define natural numbers 2 = 1 + 1, 3 = 2 + 1,
4 = 3 + 1, and so on. . . It was proved in the previous lecture
that 0 < 1. Repeatedly adding 1 to both sides of this
inequality, we obtain 0 < 1 < 2 < 3 < . . . In particular, all
these numbers are distinct.

However the entire set of natural numbers can only be defined
in an implicit way.

Definition. A set E ⊂ R is called inductive if 1 ∈ E and,
for any real number x , x ∈ E implies x + 1 ∈ E . The set N
of natural numbers is the smallest inductive subset of R
(namely, it is the intersection of all inductive subsets of R).

The set of integers is defined as Z = −N ∪ {0} ∪ N.
The set of rationals is defined as Q={m/n | m ∈ Z, n ∈ N}.



Archimedean Principle

Theorem (Archimedean Principle) For any real number
ε > 0 there exists a natural number n such that nε > 1.

Remark. Archimedean Principle means that R contains no
infinitesimal (i.e., infinitely small) numbers other than 0.

Proof: In the case ε > 1, we can take n = 1. Now assume
ε ≤ 1. Let E be the set of all natural numbers n such that
nε ≤ 1. Observe that E is nonempty (1 ∈ E ) and bounded
above (1/ε is an upper bound). By Completeness Axiom,
m = supE exists. By definition of supE , there exists n ∈ E

such that n > m − 1/2 (as otherwise m − 1/2 would be an
upper bound for E ). Then n + 1 is a natural number and
n + 1 > m + 1/2 > m. It follows that n + 1 is not in E .
Consequently, (n + 1)ε > 1.

Corollary For any a, b > 0 there exists a natural number n
such that na > b.


