MATH 409 Advanced Calculus I Lecture 4: Archimedean principle. Mathematical induction. Binomial formula.

Natural, integer, and rational numbers

Definition. A set $E \subset \mathbb{R}$ is called **inductive** if $1 \in E$ and, for any real number $x, x \in E$ implies $x + 1 \in E$. The set \mathbb{N} of **natural numbers** is the smallest inductive subset of \mathbb{R} .

Remark. The set \mathbb{N} is well defined. Namely, it is the intersection of all inductive subsets of \mathbb{R} .

The set of integers is defined as $\mathbb{Z} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}.$

The set of **rationals** is defined as

$$\mathbb{Q} = \{ m/n \mid m \in \mathbb{Z}, n \in \mathbb{N} \}.$$

Archimedean Principle

Theorem (Archimedean Principle) For any real number $\varepsilon > 0$ there exists a natural number *n* such that $n\varepsilon > 1$.

Remark. Archimedean Principle means that \mathbb{R} contains no **infinitesimal** (i.e., infinitely small) numbers other than 0.

Proof: In the case $\varepsilon > 1$, we can take n = 1. Now assume $\varepsilon \leq 1$. Let E be the set of all natural numbers n such that $n\varepsilon \leq 1$. Observe that E is nonempty $(1 \in E)$ and bounded above $(1/\varepsilon$ is an upper bound). By Completeness Axiom, $m = \sup E$ exists. By definition of $\sup E$, there exists $n \in E$ such that n > m - 1/2 (as otherwise m - 1/2 would be an upper bound for E). Then n + 1 is a natural number and n + 1 > m + 1/2 > m. It follows that n + 1 is not in E. Consequently, $(n + 1)\varepsilon > 1$.

Corollary For any a, b > 0 there exists a natural number *n* such that na > b.

Basic properties of the natural numbers

• 1 is the least natural number.

The interval $[1,\infty)$ is an inductive set. Hence $\mathbb{N} \subset [1,\infty)$.

• If
$$n \in \mathbb{N}$$
, then $n - 1 \in \mathbb{N} \cup \{0\}$.

Let *E* be the set of all $n \in \mathbb{N}$ such that $n - 1 \in \mathbb{N} \cup \{0\}$. Then $1 \in E$ as 1 - 1 = 0. Besides, for any $n \in E$ we have $(n+1) - 1 = n \in \mathbb{N}$ so that $n+1 \in E$. Therefore *E* is an inductive set. Then $\mathbb{N} \subset E$, which implies that $E = \mathbb{N}$.

• If $n \in \mathbb{N}$, then the open interval (n-1, n) contains no natural numbers.

Let *E* be the set of all $n \in \mathbb{N}$ such that $(n-1, n) \cap \mathbb{N} = \emptyset$. Then $1 \in E$ as $\mathbb{N} \subset [1, \infty)$. Now assume $n \in E$ and take any $x \in (n, n+1)$. We have $x - 1 \neq 0$ since $x > n \ge 1$, and $x - 1 \notin \mathbb{N}$ since $x - 1 \in (n - 1, n)$. By the above, $x \notin \mathbb{N}$. Thus *E* is an inductive set, which implies that $E = \mathbb{N}$.

Principle of well-ordering

Definition. Suppose X is a set endowed with a strict linear order \prec . We say that a subset $Y \subset X$ is **well-ordered** with respect to \prec if any nonempty subset of Y has a least element.

Theorem The set \mathbb{N} is well-ordered with respect to the natural ordering of the real line \mathbb{R} .

Proof: Let *E* be an arbitrary nonempty subset of \mathbb{N} . The set *E* is bounded below since 1 is a lower bound of \mathbb{N} . Therefore $m = \inf E$ exists. Since *m* is a lower bound of *E* while m + 1 is not, we can find $n \in E$ such that $m \leq n < m + 1$. As shown before, the interval (n - 1, n) is disjoint from \mathbb{N} . Then $(-\infty, n) = (-\infty, m) \cup (n - 1, n)$ is disjoint from *E*, which implies that *n* is a lower bound of *E*. Hence $n \leq \inf E = m$ so that $n = m = \inf E$. Thus *n* is the least element of *E*.

Principle of mathematical induction

Theorem Let P(n) be an assertion depending on a natural variable n. Suppose that

- *P*(1) holds,
- whenever P(k) holds, so does P(k+1).

Then P(n) holds for all $n \in \mathbb{N}$.

Proof: Let *E* be the set of all natural numbers *n* such that P(n) holds. Clearly, *E* is an inductive set. Therefore $\mathbb{N} \subset E$, which implies that $E = \mathbb{N}$.

Remark. The assertion P(1) is called the **basis of** induction. The implication $P(k) \implies P(k+1)$ is called the induction step.

Examples of assertions P(n):

(a)
$$1 + 2 + \dots + n = n(n+1)/2$$
,
(b) $n(n+1)(n+2)$ is divisible by 6,
(c) $n = 2p + 3q$ for some $p, q \in \mathbb{Z}$.

Strong induction

Theorem Let P(n) be an assertion depending on a natural variable *n*. Suppose that P(n) holds whenever P(k) holds for all natural k < n. Then P(n) holds for all $n \in \mathbb{N}$.

Remark. For n = 1, the assumption of the theorem means that P(1) holds unconditionally. For n = 2, it means that P(1) implies P(2). For n = 3, it means that P(1) and P(2) imply P(3). And so on...

Proof of the theorem: For any natural number n we define new assertion Q(n) = "P(k) holds for any natural $k \le n$ ". Then Q(1) is equivalent to P(1), in particular, it holds. By assumption, Q(n) implies P(n+1) for any $n \in \mathbb{N}$. Moreover, Q(n+1) holds if and only if both Q(n) and P(n+1) hold. Therefore, Q(n) implies Q(n+1) for all $n \in \mathbb{N}$. By the principle of mathematical induction, Q(n) holds for all $n \in \mathbb{N}$. Then P(n) holds for all $n \in \mathbb{N}$ as well.

Well-ordering and induction

Principle of well-ordering:

The set $\mathbb N$ is well-ordered, that is, any nonempty subset of $\mathbb N$ has a least element.

Principle of mathematical induction:

Let P(n) be an assertion depending on a natural variable n. Suppose that P(1) holds and P(k) implies P(k + 1) for any $k \in \mathbb{N}$. Then P(n) holds for all $n \in \mathbb{N}$.

Induction with a different base:

Let P(n) be an assertion depending on an integer variable n. Suppose that $P(n_0)$ holds for some $n_0 \in \mathbb{Z}$ and P(k) implies P(k+1) for any $k \ge n_0$. Then P(n) holds for all $n \ge n_0$.

Strong induction: Let P(n) be an assertion depending on a natural variable *n*. Suppose that P(n) holds whenever P(k) holds for all natural k < n. Then P(n) holds for all $n \in \mathbb{N}$.

Inductive definition

The principle of mathematical induction allows to define mathematical objects inductively (that is, recursively).

Examples of inductive definitions:

• Power a^n of a number

Given a real number a, we let $a^0 = 1$ and $a^n = a^{n-1}a$ for any $n \in \mathbb{N}$.

• Factorial *n*!

We let 0! = 1 and $n! = (n-1)! \cdot n$ for any $n \in \mathbb{N}$.

• Fibonacci numbers F_1, F_2, \ldots We let $F_1 = F_2 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for any $n \ge 3$.

Binomial coefficients

Definition. For any integers *n* and *k*, $0 \le k \le n$, we define the **binomial coefficient** $\binom{n}{k}$ (*n* choose *k*) by

$$\binom{n}{k} = \frac{n!}{k! (n-k)!}.$$

If $k > 0$ then $\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{1 \cdot 2 \cdot \dots \cdot k}.$

"*n* choose *k*" refers to the fact that $\binom{n}{k}$ is the number of all *k*-element subsets of an *n*-element set.

Lemma $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ for all n and k, $1 \le k \le n$. *Proof:* $\binom{n}{k-1} + \binom{n}{k} = \frac{n!}{(k-1)!(n-k+1)!} + \frac{n!}{k!(n-k)!}$ $= \frac{n!}{(k-1)!(n-k)!} \left(\frac{1}{n-k+1} + \frac{1}{k}\right) = \frac{n!}{(k-1)!(n-k)!} \cdot \frac{n+1}{k(n-k+1)!}$ $= \frac{(n+1)!}{k!(n-k+1)!} = \binom{n+1}{k}.$

Pascal's triangle

The formula $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$ allows to compute the binomial coefficients recursively. Usually the results are formatted as a triangular array called **Pascal's triangle**. Namely, $\binom{n}{k}$ is the *k*-th number in the *n*-th row of the triangle (the numbering of rows and elements in a row starts from 0).

Binomial formula

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

In particular,
$$(a + b)^2 = a^2 + 2ab + b^2$$
,
 $(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$,
 $(a + b)^4 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$.

The coefficients in the binomial formula are consecutive numbers in the *n*-th row of Pascal's triangle.

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k.$$

Proof: The proof is by induction on *n*. In the case n = 1, the formula is trivial: $(a + b)^1 = {1 \choose 0}a + {1 \choose 1}b$. Now assume that the formula holds for a particular value of *n*. Then

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{k=0}^n \binom{n}{k}a^{n-k}b^k$$
$$= \sum_{k=0}^n \binom{n}{k}a^{n-k+1}b^k + \sum_{k=0}^n \binom{n}{k}a^{n-k}b^{k+1}$$
$$= \sum_{k=0}^n \binom{n}{k}a^{n-k+1}b^k + \sum_{k=1}^{n+1} \binom{n}{k-1}a^{n-k+1}b^k$$
$$= \binom{n}{0}a^{n+1} + \sum_{k=1}^n \binom{n}{k}a^{n+1-k}b^k + \binom{n}{n}b^{n+1}$$
$$= \binom{n+1}{0}a^{n+1} + \sum_{k=1}^n \binom{n+1}{k}a^{n+1-k}b^k + \binom{n+1}{n+1}b^{n+1},$$

which completes the induction step.