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Advanced Calculus I

Lecture 4:

Archimedean principle.
Mathematical induction.

Binomial formula.



Natural, integer, and rational numbers

Definition. A set E ⊂ R is called inductive if

1 ∈ E and, for any real number x , x ∈ E implies
x + 1 ∈ E . The set N of natural numbers is the

smallest inductive subset of R.

Remark. The set N is well defined. Namely, it is
the intersection of all inductive subsets of R.

The set of integers is defined as

Z = −N ∪ {0} ∪ N.

The set of rationals is defined as

Q={m/n | m ∈ Z, n ∈ N}.



Archimedean Principle

Theorem (Archimedean Principle) For any real number
ε > 0 there exists a natural number n such that nε > 1.

Remark. Archimedean Principle means that R contains no
infinitesimal (i.e., infinitely small) numbers other than 0.

Proof: In the case ε > 1, we can take n = 1. Now assume
ε ≤ 1. Let E be the set of all natural numbers n such that
nε ≤ 1. Observe that E is nonempty (1 ∈ E ) and bounded
above (1/ε is an upper bound). By Completeness Axiom,
m = supE exists. By definition of supE , there exists n ∈ E

such that n > m − 1/2 (as otherwise m − 1/2 would be an
upper bound for E ). Then n + 1 is a natural number and
n + 1 > m + 1/2 > m. It follows that n + 1 is not in E .
Consequently, (n + 1)ε > 1.

Corollary For any a, b > 0 there exists a natural number n
such that na > b.



Basic properties of the natural numbers

• 1 is the least natural number.

The interval [1,∞) is an inductive set. Hence N ⊂ [1,∞).

• If n ∈ N, then n − 1 ∈ N ∪ {0}.

Let E be the set of all n ∈ N such that n − 1 ∈ N ∪ {0}.
Then 1 ∈ E as 1− 1 = 0. Besides, for any n ∈ E we have
(n + 1)− 1 = n ∈ N so that n + 1 ∈ E . Therefore E is an
inductive set. Then N ⊂ E , which implies that E = N.

• If n ∈ N, then the open interval (n − 1, n)
contains no natural numbers.

Let E be the set of all n ∈ N such that (n − 1, n) ∩ N = ∅.
Then 1 ∈ E as N ⊂ [1,∞). Now assume n ∈ E and take
any x ∈ (n, n + 1). We have x − 1 6= 0 since x > n ≥ 1,
and x − 1 /∈ N since x − 1 ∈ (n − 1, n). By the above,
x /∈ N. Thus E is an inductive set, which implies that E = N.



Principle of well-ordering

Definition. Suppose X is a set endowed with a
strict linear order ≺. We say that a subset Y ⊂ X

is well-ordered with respect to ≺ if any nonempty
subset of Y has a least element.

Theorem The set N is well-ordered with respect to

the natural ordering of the real line R.

Proof: Let E be an arbitrary nonempty subset of N. The set
E is bounded below since 1 is a lower bound of N. Therefore
m = inf E exists. Since m is a lower bound of E while m + 1
is not, we can find n ∈ E such that m ≤ n < m + 1. As
shown before, the interval (n− 1, n) is disjoint from N. Then
(−∞, n) = (−∞,m) ∪ (n − 1, n) is disjoint from E , which
implies that n is a lower bound of E . Hence n ≤ inf E = m

so that n = m = inf E . Thus n is the least element of E .



Principle of mathematical induction

Theorem Let P(n) be an assertion depending on a natural
variable n. Suppose that
• P(1) holds,
• whenever P(k) holds, so does P(k + 1).

Then P(n) holds for all n ∈ N.

Proof: Let E be the set of all natural numbers n such that
P(n) holds. Clearly, E is an inductive set. Therefore N ⊂ E ,
which implies that E = N.

Remark. The assertion P(1) is called the basis of
induction. The implication P(k) =⇒ P(k + 1) is called
the induction step.

Examples of assertions P(n):

(a) 1 + 2 + · · ·+ n = n(n + 1)/2,
(b) n(n + 1)(n + 2) is divisible by 6,
(c) n = 2p + 3q for some p, q ∈ Z.



Strong induction

Theorem Let P(n) be an assertion depending on a natural
variable n. Suppose that P(n) holds whenever P(k) holds for
all natural k < n. Then P(n) holds for all n ∈ N.

Remark. For n = 1, the assumption of the theorem means
that P(1) holds unconditionally. For n = 2, it means that
P(1) implies P(2). For n = 3, it means that P(1) and P(2)
imply P(3). And so on. . .

Proof of the theorem: For any natural number n we define
new assertion Q(n) =“P(k) holds for any natural k ≤ n”.
Then Q(1) is equivalent to P(1), in particular, it holds. By
assumption, Q(n) implies P(n + 1) for any n ∈ N. Moreover,
Q(n + 1) holds if and only if both Q(n) and P(n + 1) hold.
Therefore, Q(n) implies Q(n + 1) for all n ∈ N. By the
principle of mathematical induction, Q(n) holds for all n ∈ N.
Then P(n) holds for all n ∈ N as well.



Well-ordering and induction

Principle of well-ordering:
The set N is well-ordered, that is, any nonempty subset of N
has a least element.

Principle of mathematical induction:
Let P(n) be an assertion depending on a natural variable n.
Suppose that P(1) holds and P(k) implies P(k + 1) for any
k ∈ N. Then P(n) holds for all n ∈ N.

Induction with a different base:
Let P(n) be an assertion depending on an integer variable n.
Suppose that P(n0) holds for some n0 ∈ Z and P(k) implies
P(k + 1) for any k ≥ n0. Then P(n) holds for all n ≥ n0.

Strong induction: Let P(n) be an assertion depending on a
natural variable n. Suppose that P(n) holds whenever P(k)
holds for all natural k < n. Then P(n) holds for all n ∈ N.



Inductive definition

The principle of mathematical induction allows to

define mathematical objects inductively (that is,
recursively).

Examples of inductive definitions:

• Power an of a number
Given a real number a, we let a0 = 1 and an = an−1a for any
n ∈ N.

• Factorial n!
We let 0! = 1 and n! = (n − 1)! · n for any n ∈ N.

• Fibonacci numbers F1, F2, . . .
We let F1 = F2 = 1 and Fn = Fn−1 + Fn−2 for any n ≥ 3.



Binomial coefficients

Definition. For any integers n and k, 0 ≤ k ≤ n, we define
the binomial coefficient

(

n

k

)

(n choose k) by
(

n

k

)

=
n!

k! (n − k)!
.

If k > 0 then

(

n

k

)

=
n(n − 1) . . . (n − k + 1)

1 · 2 · . . . · k
.

“n choose k” refers to the fact that
(

n

k

)

is the number of all
k-element subsets of an n-element set.

Lemma
(

n+1
k

)

=
(

n

k−1

)

+
(

n

k

)

for all n and k, 1 ≤ k ≤ n.

Proof:
(

n

k−1

)

+
(

n

k

)

= n!
(k−1)! (n−k+1)!

+ n!
k! (n−k)!

= n!
(k−1)! (n−k)!

(

1
n−k+1

+ 1
k

)

= n!
(k−1)! (n−k)!

· n+1
k(n−k+1)

= (n+1)!
k! (n−k+1)!

=
(

n+1
k

)

.



Pascal’s triangle

The formula
(

n+1
k

)

=
(

n

k−1

)

+
(

n

k

)

allows to compute the
binomial coefficients recursively. Usually the results are
formatted as a triangular array called Pascal’s triangle.
Namely,

(

n

k

)

is the k-th number in the n-th row of the triangle
(the numbering of rows and elements in a row starts from 0).

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1



Binomial formula

Theorem For any a, b ∈ R and n ∈ N,

(a+ b)n =
n

∑

k=0

(

n

k

)

an−kbk .

In particular, (a + b)2 = a2 + 2ab + b2,

(a + b)3 = a3 + 3a2b + 3ab2 + b3,
(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4.

The coefficients in the binomial formula are

consecutive numbers in the n-th row of Pascal’s
triangle.



Theorem For any a, b ∈ R and n ∈ N,

(a + b)n =
n

∑

k=0

(

n

k

)

an−kbk .

Proof: The proof is by induction on n. In the case n = 1,
the formula is trivial: (a + b)1 =

(

1
0

)

a +
(

1
1

)

b. Now assume
that the formula holds for a particular value of n. Then

(a + b)n+1 = (a + b)(a + b)n = (a + b)
∑

n

k=0

(

n

k

)

an−kbk

=
∑

n

k=0

(

n

k

)

an−k+1bk +
∑

n

k=0

(

n

k

)

an−kbk+1

=
∑

n

k=0

(

n

k

)

an−k+1bk +
∑

n+1
k=1

(

n

k−1

)

an−k+1bk

=
(

n

0

)

an+1 +
∑

n

k=1

((

n

k

)

+
(

n

k−1

))

an−k+1bk +
(

n

n

)

bn+1

=
(

n+1
0

)

an+1 +
∑

n

k=1

(

n+1
k

)

an+1−kbk +
(

n+1
n+1

)

bn+1,

which completes the induction step.


