MATH 409
 Advanced Calculus I

Lecture 4:

Archimedean principle.
Mathematical induction. Binomial formula.

Natural, integer, and rational numbers

Definition. A set $E \subset \mathbb{R}$ is called inductive if $1 \in E$ and, for any real number $x, x \in E$ implies $x+1 \in E$. The set \mathbb{N} of natural numbers is the smallest inductive subset of \mathbb{R}.

Remark. The set \mathbb{N} is well defined. Namely, it is the intersection of all inductive subsets of \mathbb{R}.

The set of integers is defined as

$$
\mathbb{Z}=-\mathbb{N} \cup\{0\} \cup \mathbb{N}
$$

The set of rationals is defined as

$$
\mathbb{Q}=\{m / n \mid m \in \mathbb{Z}, n \in \mathbb{N}\} .
$$

Archimedean Principle

Theorem (Archimedean Principle) For any real number $\varepsilon>0$ there exists a natural number n such that $n \varepsilon>1$.
Remark. Archimedean Principle means that \mathbb{R} contains no infinitesimal (i.e., infinitely small) numbers other than 0 .
Proof: In the case $\varepsilon>1$, we can take $n=1$. Now assume $\varepsilon \leq 1$. Let E be the set of all natural numbers n such that $n \varepsilon \leq 1$. Observe that E is nonempty $(1 \in E)$ and bounded above ($1 / \varepsilon$ is an upper bound). By Completeness Axiom, $m=\sup E$ exists. By definition of $\sup E$, there exists $n \in E$ such that $n>m-1 / 2$ (as otherwise $m-1 / 2$ would be an upper bound for E). Then $n+1$ is a natural number and $n+1>m+1 / 2>m$. It follows that $n+1$ is not in E. Consequently, $(n+1) \varepsilon>1$.

Corollary For any $a, b>0$ there exists a natural number n such that na $>b$.

Basic properties of the natural numbers

- 1 is the least natural number.

The interval $[1, \infty)$ is an inductive set. Hence $\mathbb{N} \subset[1, \infty)$.

- If $n \in \mathbb{N}$, then $n-1 \in \mathbb{N} \cup\{0\}$.

Let E be the set of all $n \in \mathbb{N}$ such that $n-1 \in \mathbb{N} \cup\{0\}$. Then $1 \in E$ as $1-1=0$. Besides, for any $n \in E$ we have $(n+1)-1=n \in \mathbb{N}$ so that $n+1 \in E$. Therefore E is an inductive set. Then $\mathbb{N} \subset E$, which implies that $E=\mathbb{N}$.

- If $n \in \mathbb{N}$, then the open interval $(n-1, n)$ contains no natural numbers.
Let E be the set of all $n \in \mathbb{N}$ such that $(n-1, n) \cap \mathbb{N}=\emptyset$. Then $1 \in E$ as $\mathbb{N} \subset[1, \infty)$. Now assume $n \in E$ and take any $x \in(n, n+1)$. We have $x-1 \neq 0$ since $x>n \geq 1$, and $x-1 \notin \mathbb{N}$ since $x-1 \in(n-1, n)$. By the above, $x \notin \mathbb{N}$. Thus E is an inductive set, which implies that $E=\mathbb{N}$.

Principle of well-ordering

Definition. Suppose X is a set endowed with a strict linear order \prec. We say that a subset $Y \subset X$ is well-ordered with respect to \prec if any nonempty subset of Y has a least element.

Theorem The set \mathbb{N} is well-ordered with respect to the natural ordering of the real line \mathbb{R}.
Proof: Let E be an arbitrary nonempty subset of \mathbb{N}. The set E is bounded below since 1 is a lower bound of \mathbb{N}. Therefore $m=\inf E$ exists. Since m is a lower bound of E while $m+1$ is not, we can find $n \in E$ such that $m \leq n<m+1$. As shown before, the interval $(n-1, n)$ is disjoint from \mathbb{N}. Then $(-\infty, n)=(-\infty, m) \cup(n-1, n)$ is disjoint from E, which implies that n is a lower bound of E. Hence $n \leq \inf E=m$ so that $n=m=\inf E$. Thus n is the least element of E.

Principle of mathematical induction

Theorem Let $P(n)$ be an assertion depending on a natural variable n. Suppose that

- $P(1)$ holds,
- whenever $P(k)$ holds, so does $P(k+1)$.

Then $P(n)$ holds for all $n \in \mathbb{N}$.
Proof: Let E be the set of all natural numbers n such that $P(n)$ holds. Clearly, E is an inductive set. Therefore $\mathbb{N} \subset E$, which implies that $E=\mathbb{N}$.

Remark. The assertion $P(1)$ is called the basis of induction. The implication $P(k) \Longrightarrow P(k+1)$ is called the induction step.
Examples of assertions $P(n)$:
(a) $1+2+\cdots+n=n(n+1) / 2$,
(b) $n(n+1)(n+2)$ is divisible by 6 ,
(c) $n=2 p+3 q$ for some $p, q \in \mathbb{Z}$.

Strong induction

Theorem Let $P(n)$ be an assertion depending on a natural variable n. Suppose that $P(n)$ holds whenever $P(k)$ holds for all natural $k<n$. Then $P(n)$ holds for all $n \in \mathbb{N}$.
Remark. For $n=1$, the assumption of the theorem means that $P(1)$ holds unconditionally. For $n=2$, it means that $P(1)$ implies $P(2)$. For $n=3$, it means that $P(1)$ and $P(2)$ imply $P(3)$. And so on...

Proof of the theorem: For any natural number n we define new assertion $Q(n)=$ " $P(k)$ holds for any natural $k \leq n$ ". Then $Q(1)$ is equivalent to $P(1)$, in particular, it holds. By assumption, $Q(n)$ implies $P(n+1)$ for any $n \in \mathbb{N}$. Moreover, $Q(n+1)$ holds if and only if both $Q(n)$ and $P(n+1)$ hold. Therefore, $Q(n)$ implies $Q(n+1)$ for all $n \in \mathbb{N}$. By the principle of mathematical induction, $Q(n)$ holds for all $n \in \mathbb{N}$. Then $P(n)$ holds for all $n \in \mathbb{N}$ as well.

Well-ordering and induction

Principle of well-ordering:
The set \mathbb{N} is well-ordered, that is, any nonempty subset of \mathbb{N} has a least element.

Principle of mathematical induction:
Let $P(n)$ be an assertion depending on a natural variable n.
Suppose that $P(1)$ holds and $P(k)$ implies $P(k+1)$ for any
$k \in \mathbb{N}$. Then $P(n)$ holds for all $n \in \mathbb{N}$.
Induction with a different base:
Let $P(n)$ be an assertion depending on an integer variable n. Suppose that $P\left(n_{0}\right)$ holds for some $n_{0} \in \mathbb{Z}$ and $P(k)$ implies $P(k+1)$ for any $k \geq n_{0}$. Then $P(n)$ holds for all $n \geq n_{0}$.

Strong induction: Let $P(n)$ be an assertion depending on a natural variable n. Suppose that $P(n)$ holds whenever $P(k)$ holds for all natural $k<n$. Then $P(n)$ holds for all $n \in \mathbb{N}$.

Inductive definition

The principle of mathematical induction allows to define mathematical objects inductively (that is, recursively).

Examples of inductive definitions:

- Power a^{n} of a number

Given a real number a, we let $a^{0}=1$ and $a^{n}=a^{n-1} a$ for any $n \in \mathbb{N}$.

- Factorial n !

We let $0!=1$ and $n!=(n-1)!\cdot n$ for any $n \in \mathbb{N}$.

- Fibonacci numbers F_{1}, F_{2}, \ldots

We let $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$ for any $n \geq 3$.

Binomial coefficients

Definition. For any integers n and $k, 0 \leq k \leq n$, we define the binomial coefficient $\binom{n}{k}$ (n choose k) by

$$
\binom{n}{k}=\frac{n!}{k!(n-k)!}
$$

If $k>0$ then $\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{1 \cdot 2 \cdot \ldots \cdot k}$.
" n choose k " refers to the fact that $\binom{n}{k}$ is the number of all k-element subsets of an n-element set.

Lemma $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$ for all n and $k, 1 \leq k \leq n$.
Proof: $\quad\binom{n}{k-1}+\binom{n}{k}=\frac{n!}{(k-1)!(n-k+1)!}+\frac{n!}{k!(n-k)!}$
$=\frac{n!}{(k-1)!(n-k)!}\left(\frac{1}{n-k+1}+\frac{1}{k}\right)=\frac{n!}{(k-1)!(n-k)!} \cdot \frac{n+1}{k(n-k+1)}$
$=\frac{(n+1)!}{k!(n-k+1)!}=\binom{n+1}{k}$.

Pascal's triangle

The formula $\binom{n+1}{k}=\binom{n}{k-1}+\binom{n}{k}$ allows to compute the binomial coefficients recursively. Usually the results are formatted as a triangular array called Pascal's triangle. Namely, $\binom{n}{k}$ is the k-th number in the n-th row of the triangle (the numbering of rows and elements in a row starts from 0).

Binomial formula

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} .
$$

In particular, $(a+b)^{2}=a^{2}+2 a b+b^{2}$,
$(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$,
$(a+b)^{4}=a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$.
The coefficients in the binomial formula are consecutive numbers in the n-th row of Pascal's triangle.

Theorem For any $a, b \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}
$$

Proof: The proof is by induction on n. In the case $n=1$, the formula is trivial: $(a+b)^{1}=\binom{1}{0} a+\binom{1}{1} b$. Now assume that the formula holds for a particular value of n. Then

$$
\begin{gathered}
(a+b)^{n+1}=(a+b)(a+b)^{n}=(a+b) \sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k} \\
=\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k+1} \\
=\sum_{k=0}^{n}\binom{n}{k} a^{n-k+1} b^{k}+\sum_{k=1}^{n+1}\binom{n}{k-1} a^{n-k+1} b^{k} \\
\left.=\binom{n}{0} a^{n+1}+\sum_{k=1}^{n}\binom{n}{k}+\binom{n}{k-1}\right) a^{n-k+1} b^{k}+\binom{n}{n} b^{n+1} \\
=\binom{n+1}{0} a^{n+1}+\sum_{k=1}^{n}\binom{n+1}{k} a^{n+1-k} b^{k}+\binom{n+1}{n+1} b^{n+1},
\end{gathered}
$$

which completes the induction step.

