MATH 409
 Advanced Calculus I

Lecture 7a:
 Absolute value.
 Metric spaces.

Absolute value

Definition. The absolute value (or modulus) of a real number a, denoted $|a|$, is defined as follows:
$|a|=\left\{\begin{array}{r}a \text { if } \quad a \geq 0, \\ -a \\ \text { if } \\ \end{array} \quad a<0 . ~ \$\right.$
Properties of the absolute value:

- $|a| \geq 0$.
- $|a|=0$ if and only if $a=0$.
- $|-a|=|a|$.
- $|a|=\max (a,-a)$.
- $-|a| \leq a \leq|a|$.
- $|a|=M \Longleftrightarrow M \geq 0$ and $a= \pm M$.
- If $M>0$, then $|a|<M \Longleftrightarrow-M<a<M$.
- $|a b|=|a| \cdot|b|$.

We have that $|a|=a$ or $-a$. Likewise, $|b|=b$ or $-b$.
Therefore $|a| \cdot|b|$ is one of the numbers $a b,(-a) b, a(-b)$ or $(-a)(-b)$. We know that $(-a)(-b)=a b$ and $(-a) b=a(-b)=-a b$. Hence $|a| \cdot|b|=a b$ or $-a b$. Besides, $|a| \cdot|b| \geq 0$. Thus $|a| \cdot|b|=|a b|$.

$$
\cdot|a+b| \leq|a|+|b|
$$

Since $-|a| \leq a \leq|a|$ and $-|b| \leq b \leq|b|$, it follows that $-(|a|+|b|) \leq a+b \leq|a|+|b|$, which is equivalent to $|a+b| \leq|a|+|b|$.

Metric space

Definition. Given a nonempty set X, a metric (or distance function) on X is a function $d: X \times X \rightarrow \mathbb{R}$ that satisfies the following conditions:

- (positivity) $d(x, y) \geq 0$ for all $x, y \in X$; moreover, $d(x, y)=0$ if and only if $x=y$;
- (symmetry) $d(x, y)=d(y, x)$ for all $x, y \in X$;
- (triangle inequality) $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a metric space.

Theorem The function $d(x, y)=|y-x|$ is a metric on the real line \mathbb{R}.

Proof: We have $|y-x| \geq 0$ for all $x, y \in \mathbb{R}$. Moreover, $|y-x|=0$ only if $y-x=0$, which is equivalent to $x=y$. This proves positivity.

Symmetry follows since $x-y=-(y-x)$ and $|-a|=|a|$ for all $a \in \mathbb{R}$.
Finally, $d(x, y)=|y-x|=|(y-z)+(z-x)|$ $\leq|y-z|+|z-x|=d(z, y)+d(x, z)$.

Other examples of metric spaces

- Euclidean space
$X=\mathbb{R}^{n}, d(\mathbf{x}, \mathbf{y})=\sqrt{\left(y_{1}-x_{1}\right)^{2}+\left(y_{2}-x_{2}\right)^{2}+\cdots+\left(y_{n}-x_{n}\right)^{2}}$.
- Normed vector space X : vector space with a norm $\|\cdot\|, d(\mathbf{x}, \mathbf{y})=\|\mathbf{y}-\mathbf{x}\|$.
- Discrete metric space
X : any nonempty set, $d(x, y)=1$ if $x \neq y$ and $d(x, y)=0$ if $x=y$.
- Space of sequences
X : set of all infinite words $x=x_{1} x_{2} \ldots$ over a finite alphabet; $d(x, y)=2^{-n}$ if $x_{i}=y_{i}$ for $1 \leq i \leq n$ while $x_{n+1} \neq y_{n+1}$, $d(x, y)=0$ if $x_{i}=y_{i}$ for all $i \geq 1$.

