MATH 409 Advanced Calculus I Lecture 7a: Absolute value. Metric spaces.

Absolute value

Definition. The **absolute value** (or **modulus**) of a real number a, denoted |a|, is defined as follows:

$$|a| = egin{cases} a & ext{if} \ a \geq 0, \ -a & ext{if} \ a < 0. \end{cases}$$

Properties of the absolute value:

•
$$|a| \geq 0.$$

•
$$|a| = 0$$
 if and only if $a = 0$.

•
$$|-a|=|a|$$
.

•
$$|a| = \max(a, -a).$$

• $-|a| \leq a \leq |a|$.

•
$$|a| = M \iff M \ge 0$$
 and $a = \pm M$.

• If M > 0, then $|a| < M \iff -M < a < M$.

•
$$|ab| = |a| \cdot |b|.$$

We have that |a| = a or -a. Likewise, |b| = b or -b. Therefore $|a| \cdot |b|$ is one of the numbers ab, (-a)b, a(-b) or (-a)(-b). We know that (-a)(-b) = ab and (-a)b = a(-b) = -ab. Hence $|a| \cdot |b| = ab$ or -ab. Besides, $|a| \cdot |b| \ge 0$. Thus $|a| \cdot |b| = |ab|$.

•
$$|a+b| \leq |a|+|b|$$
.

Since $-|a| \le a \le |a|$ and $-|b| \le b \le |b|$, it follows that $-(|a| + |b|) \le a + b \le |a| + |b|$, which is equivalent to $|a + b| \le |a| + |b|$.

Metric space

Definition. Given a nonempty set X, a **metric** (or **distance function**) on X is a function $d : X \times X \to \mathbb{R}$ that satisfies the following conditions:

• (positivity) $d(x, y) \ge 0$ for all $x, y \in X$; moreover, d(x, y) = 0 if and only if x = y;

• (symmetry) d(x,y) = d(y,x) for all $x, y \in X$;

• (triangle inequality) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in X$.

A set endowed with a metric is called a **metric space**.

Theorem The function d(x, y) = |y - x| is a metric on the real line \mathbb{R} .

Proof: We have $|y - x| \ge 0$ for all $x, y \in \mathbb{R}$. Moreover, |y - x| = 0 only if y - x = 0, which is equivalent to x = y. This proves positivity.

Symmetry follows since x - y = -(y - x) and |-a| = |a| for all $a \in \mathbb{R}$.

Finally, d(x, y) = |y - x| = |(y - z) + (z - x)| $\leq |y - z| + |z - x| = d(z, y) + d(x, z).$

Other examples of metric spaces

• Euclidean space

$$X = \mathbb{R}^n$$
, $d(\mathbf{x}, \mathbf{y}) = \sqrt{(y_1 - x_1)^2 + (y_2 - x_2)^2 + \cdots + (y_n - x_n)^2}$.

• Normed vector space

X: vector space with a norm $\|\cdot\|$, $d(\mathbf{x}, \mathbf{y}) = \|\mathbf{y} - \mathbf{x}\|$.

• Discrete metric space

X: any nonempty set, d(x, y) = 1 if $x \neq y$ and d(x, y) = 0 if x = y.

• Space of sequences

X: set of all infinite words $x = x_1x_2...$ over a finite alphabet; $d(x, y) = 2^{-n}$ if $x_i = y_i$ for $1 \le i \le n$ while $x_{n+1} \ne y_{n+1}$, d(x, y) = 0 if $x_i = y_i$ for all $i \ge 1$.