MATH 409
 Advanced Calculus I

Lecture 7b:
 Limit of a sequence.

Convergence of a sequence

A sequence of elements of a set X is a function $f: \mathbb{N} \rightarrow X$. Notation: x_{1}, x_{2}, \ldots, where $x_{n}=f(n)$, or $\left\{x_{n}\right\}_{n \in \mathbb{N}}$, or $\left\{x_{n}\right\}$.
Suppose X is a metric space with a distance function d.
Definition. Sequence $\left\{x_{n}\right\}$ of elements of X is said to converge to an element a if for any real number $\varepsilon>0$ there exists $N=N(\varepsilon) \in \mathbb{N}$ such that $d\left(x_{n}, a\right)<\varepsilon$ whenever $n \geq N$. The point a is called the limit of the sequence $\left\{x_{n}\right\}$.
Notation: $\lim _{n \rightarrow \infty} x_{n}=a$, or $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
A sequence is called convergent if it has a limit and divergent otherwise.

Given $a \in X$ and $\varepsilon>0$, let $B_{\varepsilon}(a)=\{x \in X \mid d(x, a)<\varepsilon\}$ be the set of all points in X at distance less than ε from a. This set is called the ε-neighborhood of the point a or the ball of radius ε centered at a.

Convergence of a sequence in \mathbb{R}

Definition. Sequence $\left\{x_{n}\right\}$ of real numbers is said to converge to a real number a if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$. The number a is called the limit of $\left\{x_{n}\right\}$. Notation: $\lim _{n \rightarrow \infty} x_{n}=a$, or $x_{n} \rightarrow a$ as $n \rightarrow \infty$.
A sequence is called convergent if it has a limit and divergent otherwise.

The condition $\left|x_{n}-a\right|<\varepsilon$ is equivalent to $a-\varepsilon<x_{n}<a+\varepsilon$ or to $x_{n} \in(a-\varepsilon, a+\varepsilon)$. Hence the ε-neighborhood of the point a is the interval ($a-\varepsilon, a+\varepsilon$).

Proposition $x_{n} \rightarrow a$ as $n \rightarrow \infty$ if and only if any ε-neighborhood of the point a contains all but finitely many terms of the sequence $\left\{x_{n}\right\}$.

Examples

- The sequence $\{1 / n\}_{n \in \mathbb{N}}$ converges to 0 .

By the Archimedean Principle, for any $\varepsilon>0$ there exists a natural number N such that $N \varepsilon>1$. Then for any integer $n \geq N$ we have $n \varepsilon \geq N \varepsilon>1$ so that $1 / n<\varepsilon$. Since $1 / n>0$, we obtain $|1 / n|<\varepsilon$ for all $n \geq N$.

- Constant sequence $\left\{x_{n}\right\}$, where $x_{n}=a$ for some $a \in \mathbb{R}$ and all $n \in \mathbb{N}$.
Since $\left|x_{n}-a\right|=0$ for all $n \in \mathbb{N}$, the sequence converges to a.
- Sequence $\left\{(-1)^{n}\right\}_{n \in \mathbb{N}}$, i.e., $-1,1,-1,1, \ldots$, is divergent.
- Sequence $\{n\}_{n \in \mathbb{N}}$, i.e., $1,2,3,4, \ldots$, is divergent.

