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Advanced Calculus I

Lecture 10:

Monotonic sequences.



Monotonic sequences

Definition. A sequence {xn} is called nondecreasing if
x1 ≤ x2 ≤ x3 ≤ . . . or, to be precise, xn ≤ xn+1 for all n ∈ N.
It is called (strictly) increasing if x1 < x2 < x3 < . . . , that is,
xn < xn+1 for all n ∈ N.

Likewise, the sequence {xn} is called nonincreasing if
xn ≥ xn+1 for all n ∈ N. It is called (strictly) decreasing if
xn > xn+1 for all n ∈ N.

All of the above sequences are called monotonic.

Examples:

• the sequence {1/n} is decreasing;
• the sequence 1, 1, 2, 2, 3, 3, . . . is nondecreasing, but not
strictly increasing;
• the sequence −1, 1,−1, 1,−1, 1, . . . is neither
nondecreasing nor nonincreasing;
• a constant sequence is both nondecreasing and nonincreasing.



Theorem Any nondecreasing sequence converges

to a limit if bounded, and diverges to +∞ otherwise.

Proof: Let {xn} be a nondecreasing sequence. First consider
the case when {xn} is bounded. In this case, the set E of all
elements occurring in the sequence is bounded. Then supE
exists. We claim that xn → supE as n → ∞. Take any
ε > 0. Then supE − ε is not an upper bound of E . Hence
there exists n0 ∈ N such that xn0 > supE − ε. Since the
sequence is nondecreasing, we have xn ≥ xn0 > supE − ε for
all n ≥ n0. At the same time, xn ≤ sup E for all n ∈ N.
Therefore |xn − supE | < ε for all n ≥ n0, which proves the
claim.

Now consider the case when the sequence {xn} is not
bounded. Note that the set E is bounded below (as x1 is a
lower bound). Hence E is not bounded above. Then for any
C ∈ R there exists n0 ∈ N such that xn0 > C . It follows that
xn ≥ xn0 > C for all n ≥ n0. Thus {xn} diverges to +∞.



Theorem Any nonincreasing sequence converges to

a limit if bounded, and diverges to −∞ otherwise.

Proof: Let {xn} be a nonincreasing sequence. Then the
sequence {−xn} is nondecreasing since the inequality a ≥ b is
equivalent to −a ≤ −b for all a, b ∈ R. By the previous
theorem, either −xn → c for some c ∈ R as n → ∞, or else
−xn diverges to +∞. In the former case, xn → −c as
n → ∞ (in particular, it is bounded). In the latter case, xn
diverges to −∞ (in particular, it is unbounded).

Corollary Any monotonic sequence converges to a
limit if it is bounded, and diverges to +∞ or −∞
otherwise.



Examples

• If 0 < a < 1 then an → 0 as n → ∞.

Since a < 1 and a > 0, it follows that an+1 < an and an > 0
for all n ∈ N. Hence the sequence {an} is strictly decreasing
and bounded. Therefore it converges to some x ∈ R. Since
an+1 = ana for all n, it follows that an+1 → xa as n → ∞.
However the sequence {an+1} is a subsequence of {an}, hence
it converges to the same limit as {an}. Thus xa = x , which
implies that x = 0.

• If a > 1 then an → +∞ as n → ∞.

Since a > 1, it follows that an+1 > an > 1 for all n ∈ N.
Hence the sequence {an} is strictly increasing. Then {an}
either diverges to +∞ or converges to a limit x . In the latter
case we argue as above to obtain that x = 0. However this
contradicts with an > 1. Thus {an} diverges to +∞.



Examples

• If a > 0 then n

√
a → 1 as n → ∞.

Remark. By definition, n

√
a is a unique positive number r

such that r n = a (for now, we assume it exists).

If a ≥ 1 then an+1 ≥ an ≥ 1 for all n ∈ N, which implies

that
n(n+1)

√
an+1 ≥ n(n+1)

√
an ≥ 1. Notice that

n(n+1)
√
an+1 = n

√
a

and n(n+1)
√
an = n+1

√
a. Hence n

√
a ≥ n+1

√
a ≥ 1 for all n.

Similarly, in the case 0 < a < 1 we obtain that
n

√
a < n+1

√
a < 1 for all n.

In either case, the sequence { n

√
a} is monotonic and bounded.

Therefore it converges to a limit x . Then the sequence { 2n
√
a}

also converges to x since it is a subsequence of { n

√
a}. At the

same time, ( 2n
√
a)2 = n

√
a, which implies that x2 = x . Hence

x = 0 or x = 1. However the limit cannot be 0 since
n

√
a ≥ min(a, 1) > 0. Thus x = 1.



Examples

• 3, 3 +
√
3, 3 +

√

3 +
√
3, . . .

That is, x1 = 3 and xn+1 = 3 +
√
xn for all n ∈ N.

First we show that {xn} is increasing (by induction on n). We
have x2 = 3+

√
x1 = 3+

√
3 > 3 = x1. Further, if xn+1 > xn

for some n ∈ N, then xn+2 = 3 +
√
xn+1 > 3 +

√
xn = xn+1.

Next we show that xn < 6 for all n ∈ N (also by induction on
n). Indeed, x1 = 3 < 6, and if xn < 6 for some n ∈ N, then
xn+1 = 3 +

√
xn < 3 +

√
6 < 3 +

√
9 = 6.

Thus the sequence {xn} is increasing and bounded. Therefore
it converges to a limit L. Note that L > 3 = x1. Since
xn+1 = 3 +

√
xn, it follows that (xn+1 − 3)2 = xn. As the

sequence {xn+1} converges to the same limit L, the limit
theorems imply that (L− 3)2 = L. Then L2− 7L+9 = 0 and
L = (7±

√
13)/2. Since L > 3, we have L = (7 +

√
13)/2.


