MATH 409
 Advanced Calculus I

Lecture 10:
 Monotonic sequences.

Monotonic sequences

Definition. A sequence $\left\{x_{n}\right\}$ is called nondecreasing if $x_{1} \leq x_{2} \leq x_{3} \leq \ldots$ or, to be precise, $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$. It is called (strictly) increasing if $x_{1}<x_{2}<x_{3}<\ldots$, that is, $x_{n}<x_{n+1}$ for all $n \in \mathbb{N}$.
Likewise, the sequence $\left\{x_{n}\right\}$ is called nonincreasing if $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$. It is called (strictly) decreasing if $x_{n}>x_{n+1}$ for all $n \in \mathbb{N}$.
All of the above sequences are called monotonic.
Examples:

- the sequence $\{1 / n\}$ is decreasing;
- the sequence $1,1,2,2,3,3, \ldots$ is nondecreasing, but not strictly increasing;
- the sequence $-1,1,-1,1,-1,1, \ldots$ is neither
nondecreasing nor nonincreasing;
- a constant sequence is both nondecreasing and nonincreasing.

Theorem Any nondecreasing sequence converges

 to a limit if bounded, and diverges to $+\infty$ otherwise.Proof: Let $\left\{x_{n}\right\}$ be a nondecreasing sequence. First consider the case when $\left\{x_{n}\right\}$ is bounded. In this case, the set E of all elements occurring in the sequence is bounded. Then $\sup E$ exists. We claim that $x_{n} \rightarrow \sup E$ as $n \rightarrow \infty$. Take any $\varepsilon>0$. Then $\sup E-\varepsilon$ is not an upper bound of E. Hence there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}>\sup E-\varepsilon$. Since the sequence is nondecreasing, we have $x_{n} \geq x_{n_{0}}>\sup E-\varepsilon$ for all $n \geq n_{0}$. At the same time, $x_{n} \leq \sup E$ for all $n \in \mathbb{N}$. Therefore $\left|x_{n}-\sup E\right|<\varepsilon$ for all $n \geq n_{0}$, which proves the claim.
Now consider the case when the sequence $\left\{x_{n}\right\}$ is not bounded. Note that the set E is bounded below (as x_{1} is a lower bound). Hence E is not bounded above. Then for any $C \in \mathbb{R}$ there exists $n_{0} \in \mathbb{N}$ such that $x_{n_{0}}>C$. It follows that $x_{n} \geq x_{n_{0}}>C$ for all $n \geq n_{0}$. Thus $\left\{x_{n}\right\}$ diverges to $+\infty$.

Theorem Any nonincreasing sequence converges to a limit if bounded, and diverges to $-\infty$ otherwise.

Proof: Let $\left\{x_{n}\right\}$ be a nonincreasing sequence. Then the sequence $\left\{-x_{n}\right\}$ is nondecreasing since the inequality $a \geq b$ is equivalent to $-a \leq-b$ for all $a, b \in \mathbb{R}$. By the previous theorem, either $-x_{n} \rightarrow c$ for some $c \in \mathbb{R}$ as $n \rightarrow \infty$, or else $-x_{n}$ diverges to $+\infty$. In the former case, $x_{n} \rightarrow-c$ as $n \rightarrow \infty$ (in particular, it is bounded). In the latter case, x_{n} diverges to $-\infty$ (in particular, it is unbounded).

Corollary Any monotonic sequence converges to a limit if it is bounded, and diverges to $+\infty$ or $-\infty$ otherwise.

Examples

- If $0<a<1$ then $a^{n} \rightarrow 0$ as $n \rightarrow \infty$.

Since $a<1$ and $a>0$, it follows that $a^{n+1}<a^{n}$ and $a^{n}>0$ for all $n \in \mathbb{N}$. Hence the sequence $\left\{a^{n}\right\}$ is strictly decreasing and bounded. Therefore it converges to some $x \in \mathbb{R}$. Since $a^{n+1}=a^{n} a$ for all n, it follows that $a^{n+1} \rightarrow x a$ as $n \rightarrow \infty$. However the sequence $\left\{a^{n+1}\right\}$ is a subsequence of $\left\{a^{n}\right\}$, hence it converges to the same limit as $\left\{a^{n}\right\}$. Thus $x a=x$, which implies that $x=0$.

- If $a>1$ then $a^{n} \rightarrow+\infty$ as $n \rightarrow \infty$.

Since $a>1$, it follows that $a^{n+1}>a^{n}>1$ for all $n \in \mathbb{N}$. Hence the sequence $\left\{a^{n}\right\}$ is strictly increasing. Then $\left\{a^{n}\right\}$ either diverges to $+\infty$ or converges to a limit x. In the latter case we argue as above to obtain that $x=0$. However this contradicts with $a^{n}>1$. Thus $\left\{a^{n}\right\}$ diverges to $+\infty$.

Examples

- If $a>0$ then $\sqrt[n]{a} \rightarrow 1$ as $n \rightarrow \infty$.

Remark. By definition, $\sqrt[n]{a}$ is a unique positive number r such that $r^{n}=a$ (for now, we assume it exists).
If $a \geq 1$ then $a^{n+1} \geq a^{n} \geq 1$ for all $n \in \mathbb{N}$, which implies that $\sqrt[n(n+1)]{a^{n+1}} \geq \sqrt[n(n+1)]{a^{n}} \geq 1$. Notice that $\sqrt[n(n+1)]{a^{n+1}}=\sqrt[n]{a}$ and $\sqrt[n(n+1)]{a^{n}}=\sqrt[n+1]{a}$. Hence $\sqrt[n]{a} \geq \sqrt[n+1]{a} \geq 1$ for all n. Similarly, in the case $0<a<1$ we obtain that $\sqrt[n]{a}<\sqrt[n+1]{a}<1$ for all n.
In either case, the sequence $\{\sqrt[n]{a}\}$ is monotonic and bounded. Therefore it converges to a limit x. Then the sequence $\{\sqrt[2 n]{a}\}$ also converges to x since it is a subsequence of $\{\sqrt[n]{a}\}$. At the same time, $(\sqrt[2 n]{a})^{2}=\sqrt[n]{a}$, which implies that $x^{2}=x$. Hence $x=0$ or $x=1$. However the limit cannot be 0 since $\sqrt[n]{a} \geq \min (a, 1)>0$. Thus $x=1$.

Examples

- $3,3+\sqrt{3}, 3+\sqrt{3+\sqrt{3}}, \ldots$

That is, $x_{1}=3$ and $x_{n+1}=3+\sqrt{x_{n}}$ for all $n \in \mathbb{N}$.
First we show that $\left\{x_{n}\right\}$ is increasing (by induction on n). We have $x_{2}=3+\sqrt{x_{1}}=3+\sqrt{3}>3=x_{1}$. Further, if $x_{n+1}>x_{n}$ for some $n \in \mathbb{N}$, then $x_{n+2}=3+\sqrt{x_{n+1}}>3+\sqrt{x_{n}}=x_{n+1}$.
Next we show that $x_{n}<6$ for all $n \in \mathbb{N}$ (also by induction on n). Indeed, $x_{1}=3<6$, and if $x_{n} \leq 6$ for some $n \in \mathbb{N}$, then $x_{n+1}=3+\sqrt{x_{n}}<3+\sqrt{6}<3+\sqrt{9}=6$.
Thus the sequence $\left\{x_{n}\right\}$ is increasing and bounded. Therefore it converges to a limit L. Note that $L>3=x_{1}$. Since $x_{n+1}=3+\sqrt{x_{n}}$, it follows that $\left(x_{n+1}-3\right)^{2}=x_{n}$. As the sequence $\left\{x_{n+1}\right\}$ converges to the same limit L, the limit theorems imply that $(L-3)^{2}=L$. Then $L^{2}-7 L+9=0$ and $L=(7 \pm \sqrt{13}) / 2$. Since $L>3$, we have $L=(7+\sqrt{13}) / 2$.

