MATH 409 Advanced Calculus I Lecture 10:

Monotonic sequences.

Monotonic sequences

Definition. A sequence $\{x_n\}$ is called **nondecreasing** if $x_1 \le x_2 \le x_3 \le \ldots$ or, to be precise, $x_n \le x_{n+1}$ for all $n \in \mathbb{N}$. It is called (strictly) **increasing** if $x_1 < x_2 < x_3 < \ldots$, that is, $x_n < x_{n+1}$ for all $n \in \mathbb{N}$.

Likewise, the sequence $\{x_n\}$ is called **nonincreasing** if $x_n \ge x_{n+1}$ for all $n \in \mathbb{N}$. It is called (strictly) **decreasing** if $x_n > x_{n+1}$ for all $n \in \mathbb{N}$.

All of the above sequences are called **monotonic**.

Examples:

- the sequence $\{1/n\}$ is decreasing;
- the sequence $1, 1, 2, 2, 3, 3, \ldots$ is nondecreasing, but not strictly increasing;
- the sequence $-1, 1, -1, 1, -1, 1, \ldots$ is neither nondecreasing nor nonincreasing;
- a constant sequence is both nondecreasing and nonincreasing.

Theorem Any nondecreasing sequence converges to a limit if bounded, and diverges to $+\infty$ otherwise.

Proof: Let $\{x_n\}$ be a nondecreasing sequence. First consider the case when $\{x_n\}$ is bounded. In this case, the set E of all elements occurring in the sequence is bounded. Then sup E exists. We claim that $x_n \rightarrow \sup E$ as $n \rightarrow \infty$. Take any $\varepsilon > 0$. Then sup $E - \varepsilon$ is not an upper bound of E. Hence there exists $n_0 \in \mathbb{N}$ such that $x_{n_0} > \sup E - \varepsilon$. Since the sequence is nondecreasing, we have $x_n \ge x_{n_0} > \sup E - \varepsilon$ for all $n > n_0$. At the same time, $x_n < \sup E$ for all $n \in \mathbb{N}$. Therefore $|x_n - \sup E| < \varepsilon$ for all $n \ge n_0$, which proves the claim.

Now consider the case when the sequence $\{x_n\}$ is not bounded. Note that the set E is bounded below (as x_1 is a lower bound). Hence E is not bounded above. Then for any $C \in \mathbb{R}$ there exists $n_0 \in \mathbb{N}$ such that $x_{n_0} > C$. It follows that $x_n \ge x_{n_0} > C$ for all $n \ge n_0$. Thus $\{x_n\}$ diverges to $+\infty$. **Theorem** Any nonincreasing sequence converges to a limit if bounded, and diverges to $-\infty$ otherwise.

Proof: Let $\{x_n\}$ be a nonincreasing sequence. Then the sequence $\{-x_n\}$ is nondecreasing since the inequality $a \ge b$ is equivalent to $-a \le -b$ for all $a, b \in \mathbb{R}$. By the previous theorem, either $-x_n \rightarrow c$ for some $c \in \mathbb{R}$ as $n \rightarrow \infty$, or else $-x_n$ diverges to $+\infty$. In the former case, $x_n \rightarrow -c$ as $n \rightarrow \infty$ (in particular, it is bounded). In the latter case, x_n diverges to $-\infty$ (in particular, it is unbounded).

Corollary Any monotonic sequence converges to a limit if it is bounded, and diverges to $+\infty$ or $-\infty$ otherwise.

Examples

• If 0 < a < 1 then $a^n \to 0$ as $n \to \infty$.

Since a < 1 and a > 0, it follows that $a^{n+1} < a^n$ and $a^n > 0$ for all $n \in \mathbb{N}$. Hence the sequence $\{a^n\}$ is strictly decreasing and bounded. Therefore it converges to some $x \in \mathbb{R}$. Since $a^{n+1} = a^n a$ for all n, it follows that $a^{n+1} \to xa$ as $n \to \infty$. However the sequence $\{a^{n+1}\}$ is a subsequence of $\{a^n\}$, hence it converges to the same limit as $\{a^n\}$. Thus xa = x, which implies that x = 0.

• If a > 1 then $a^n \to +\infty$ as $n \to \infty$.

Since a > 1, it follows that $a^{n+1} > a^n > 1$ for all $n \in \mathbb{N}$. Hence the sequence $\{a^n\}$ is strictly increasing. Then $\{a^n\}$ either diverges to $+\infty$ or converges to a limit x. In the latter case we argue as above to obtain that x = 0. However this contradicts with $a^n > 1$. Thus $\{a^n\}$ diverges to $+\infty$.

Examples

• If a > 0 then $\sqrt[n]{a} \to 1$ as $n \to \infty$.

Remark. By definition, $\sqrt[n]{a}$ is a unique positive number r such that $r^n = a$ (for now, we assume it exists).

If $a \ge 1$ then $a^{n+1} \ge a^n \ge 1$ for all $n \in \mathbb{N}$, which implies that $\sqrt[n(n+1)]{a^{n+1}} \ge \sqrt[n(n+1)]{a^n} \ge 1$. Notice that $\sqrt[n(n+1)]{a^{n+1}} = \sqrt[n]{a}$ and $\sqrt[n(n+1)]{a^n} = \sqrt[n+1]{a}$. Hence $\sqrt[n]{a} \ge \sqrt[n+1]{a} \ge 1$ for all n. Similarly, in the case 0 < a < 1 we obtain that $\sqrt[n]{a} < \sqrt[n+1]{a} < 1$ for all n.

In either case, the sequence $\{\sqrt[n]{a}\}$ is monotonic and bounded. Therefore it converges to a limit x. Then the sequence $\{\sqrt[n]{a}\}$ also converges to x since it is a subsequence of $\{\sqrt[n]{a}\}$. At the same time, $(\sqrt[2n]{a})^2 = \sqrt[n]{a}$, which implies that $x^2 = x$. Hence x = 0 or x = 1. However the limit cannot be 0 since $\sqrt[n]{a} \ge \min(a, 1) > 0$. Thus x = 1.

Examples

• 3,
$$3 + \sqrt{3}$$
, $3 + \sqrt{3 + \sqrt{3}}$, ...

That is, $x_1 = 3$ and $x_{n+1} = 3 + \sqrt{x_n}$ for all $n \in \mathbb{N}$.

First we show that $\{x_n\}$ is increasing (by induction on *n*). We have $x_2 = 3 + \sqrt{x_1} = 3 + \sqrt{3} > 3 = x_1$. Further, if $x_{n+1} > x_n$ for some $n \in \mathbb{N}$, then $x_{n+2} = 3 + \sqrt{x_{n+1}} > 3 + \sqrt{x_n} = x_{n+1}$.

Next we show that $x_n < 6$ for all $n \in \mathbb{N}$ (also by induction on n). Indeed, $x_1 = 3 < 6$, and if $x_n < 6$ for some $n \in \mathbb{N}$, then $x_{n+1} = 3 + \sqrt{x_n} < 3 + \sqrt{6} < 3 + \sqrt{9} = 6$.

Thus the sequence $\{x_n\}$ is increasing and bounded. Therefore it converges to a limit *L*. Note that $L > 3 = x_1$. Since $x_{n+1} = 3 + \sqrt{x_n}$, it follows that $(x_{n+1} - 3)^2 = x_n$. As the sequence $\{x_{n+1}\}$ converges to the same limit *L*, the limit theorems imply that $(L-3)^2 = L$. Then $L^2 - 7L + 9 = 0$ and $L = (7 \pm \sqrt{13})/2$. Since L > 3, we have $L = (7 + \sqrt{13})/2$.