MATH 409
 Advanced Calculus I

Lecture 11: More examples of limits.

Limit of a sequence

Definition. Sequence $\left\{x_{n}\right\}$ of real numbers is said to converge to a real number a if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon$ for all $n \geq N$. The number a is called the limit of $\left\{x_{n}\right\}$.
A sequence is called convergent if it has a limit and divergent otherwise.

Properties of convergent sequences:

- the limit is unique;
- any convergent sequence is bounded;
- any subsequence of a convergent sequence converges to the same limit;
- modifying a finite number of elements cannot affect convergence of a sequence or change its limit;
- rearranging elements of a sequence cannot affect its convergence or change its limit.

Limit theorems

Theorem 1 If $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$ and $x_{n} \leq w_{n} \leq y_{n}$ for all sufficiently large n, then $\lim _{n \rightarrow \infty} w_{n}=a$.

Theorem 2 If $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} y_{n}=b$, and $x_{n} \leq y_{n}$ for all sufficiently large n, then $a \leq b$.

Theorem 3 If $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} y_{n}=b$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=a+b, \quad \lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=a-b$, and $\lim _{n \rightarrow \infty} x_{n} y_{n}=a b$. If, additionally, $b \neq 0$ and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} x_{n} / y_{n}=a / b$.

Monotonic sequences

Definition. A sequence $\left\{x_{n}\right\}$ is called nondecreasing if $x_{n} \leq x_{n+1}$ for all $n \in \mathbb{N}$. It is called (strictly) increasing if $x_{n}<x_{n+1}$ for all $n \in \mathbb{N}$.
Likewise, the sequence $\left\{x_{n}\right\}$ is called nonincreasing if $x_{n} \geq x_{n+1}$ for all $n \in \mathbb{N}$. It is called (strictly) decreasing if $x_{n}>x_{n+1}$ for all $n \in \mathbb{N}$.
All of the above sequences are called monotonic.
Theorem Any monotonic sequence converges to a limit if bounded, and diverges to $+\infty$ or $-\infty$ otherwise.

Examples

- $\lim _{n \rightarrow \infty} \frac{\sin \left(e^{n}\right)}{n}=0$.
$-1 / n \leq \sin \left(e^{n}\right) / n \leq 1 / n$ for all $n \in \mathbb{N}$ since $-1 \leq \sin x \leq 1$ for all $x \in \mathbb{R}$. We already know that $1 / n \rightarrow 0$ as $n \rightarrow \infty$. Then $-1 / n \rightarrow-1 \cdot 0=0$ as $n \rightarrow \infty$. By the Squeeze Theorem, $\sin \left(e^{n}\right) / n \rightarrow 0$ as $n \rightarrow \infty$.
- $\lim _{n \rightarrow \infty} \frac{1}{2^{n}}=0$.

The sequence $\left\{1 / 2^{n}\right\}$ is a subsequence of $\{1 / n\}$. Hence it is converging to the same limit. Alternatively, we can show by induction that $2^{n}>n$ for all $n \in \mathbb{N}$. Then $0<2^{-n}<n^{-1}$ and we can apply the Squeeze Theorem.

Examples

- The sequence $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n=1,2,3, \ldots$, is increasing and bounded, hence it is convergent. Remark. The limit is the number $e=2.71828 \ldots$

First let us show that $\left\{x_{n}\right\}$ is increasing. For any $n \in \mathbb{N}$,
$x_{n}=\left(1+\frac{1}{n}\right)^{n}=\left(\frac{n+1}{n}\right)^{n}=\frac{(n+1)^{n}}{n^{n}}$.
If $n \geq 2$ then, similarly, $x_{n-1}=\frac{n^{n-1}}{(n-1)^{n-1}}$. Hence

$$
\begin{aligned}
\frac{x_{n}}{x_{n-1}} & =\frac{(n+1)^{n}}{n^{n}} \cdot \frac{(n-1)^{n-1}}{n^{n-1}}=\left(\frac{(n+1)(n-1)}{n^{2}}\right)^{n-1} \cdot \frac{n+1}{n} \\
& =\left(\frac{n^{2}-1}{n^{2}}\right)^{n-1} \cdot \frac{n+1}{n}=\left(1-\frac{1}{n^{2}}\right)^{n-1}\left(1+\frac{1}{n}\right) .
\end{aligned}
$$

To proceed, we need the following estimate.
Lemma If $0<x<1$, then $(1-x)^{k} \geq 1-k x$ for all $k \in \mathbb{N}$. Using the lemma, we obtain that

$$
\begin{aligned}
& \frac{x_{n}}{x_{n-1}}=\left(1-\frac{1}{n^{2}}\right)^{n-1}\left(1+\frac{1}{n}\right) \geq\left(1-\frac{n-1}{n^{2}}\right)\left(1+\frac{1}{n}\right) \\
& \quad=1-\frac{n-1}{n^{2}}+\frac{1}{n}-\frac{n-1}{n^{3}}=1+\frac{1}{n^{2}}-\frac{n-1}{n^{3}}=1+\frac{1}{n^{3}}>1 .
\end{aligned}
$$

Thus the sequence $\left\{x_{n}\right\}$ is strictly increasing.
Proof of the lemma: The lemma is proved by induction on k. The case $k=1$ is trivial as $(1-x)^{1}=1-1 \cdot x$. Now assume that the inequality $(1-x)^{k} \geq 1-k x$ holds for some $k \in \mathbb{N}$ and all $x \in(0,1)$. Then $(1-x)^{k+1}=(1-x)^{k}(1-x)$ $\geq(1-k x)(1-x)=1-k x-x+k x^{2}>1-(k+1) x$.
Remark. According to the Binomial Formula,

$$
(1-x)^{k}=1-k x+\frac{k(k-1)}{2} x^{2}-\ldots
$$

Now let us show that the sequence $\left\{x_{n}\right\}$ is bounded. Since $\left\{x_{n}\right\}$ is increasing, it is enough to show that it is bounded above. By the Binomial Formula,
$x_{n}=\left(1+\frac{1}{n}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k}\left(\frac{1}{n}\right)^{k}=\sum_{k=0}^{n} \frac{n!}{k!(n-k)!}\left(\frac{1}{n}\right)^{k}$.
Observe that $\frac{n!}{(n-k)!}\left(\frac{1}{n}\right)^{k}=\frac{n(n-1) \ldots(n-k+1)}{n^{k}} \leq 1$.
It follows that $\quad x_{n} \leq \sum_{k=0}^{n} \frac{1}{k!}=1+\frac{1}{1!}+\frac{1}{2!}+\cdots+\frac{1}{n!}$.
Further observe that $k!\geq 2^{k-1}$ for all $k \geq 0$. Therefore we obtain

$$
x_{n} \leq 1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}=3-\frac{1}{2^{n-1}}<3
$$

Examples

- $\sqrt[n]{n} \rightarrow 1$ as $n \rightarrow \infty$.

The sequence $x_{n}=\sqrt[n]{n}, n \in \mathbb{N}$ is eventually decreasing. We have $1<\sqrt{2}<\sqrt[3]{3}$, but then $\sqrt[3]{3}>\sqrt[4]{4}>\sqrt[5]{5}>\ldots$ That is, $x_{n+1}<x_{n}$ for all $n \geq 3$. Indeed, using the estimate from the previous example, we obtain

$$
\left(\frac{x_{n+1}}{x_{n}}\right)^{n(n+1)}=\frac{(n+1)^{n}}{n^{n+1}}=\frac{1}{n}\left(1+\frac{1}{n}\right)^{n}<\frac{3}{n} \leq 1 .
$$

Since the sequence $\{\sqrt[n]{n}\}$ is eventually decreasing and bounded below (by 1), it converges to a limit L. Then the sequence $\{\sqrt[2 n]{2 n}\}$ also converges to L since it is a subsequence of $\{\sqrt[n]{n}\}$. At the same time, $(\sqrt[2 n]{2 n})^{2}=\sqrt[n]{2 n}=\sqrt[n]{2} \sqrt[n]{n}$. We already know that $\sqrt[n]{2} \rightarrow 1$ as $n \rightarrow \infty$. It follows that $L^{2}=L$. Hence $L=0$ or $L=1$. However the limit cannot be 0 since 1 is a lower bound. Thus $L=1$.

