MATH 409 Advanced Calculus I Lecture 12: Bolzano-Weierstrass theorem. Cauchy sequences.

Nested intervals property

Definition. A sequence of sets I_1, I_2, \ldots is called **nested** if $I_1 \supset I_2 \supset \ldots$, that is, $I_n \supset I_{n+1}$ for all $n \in \mathbb{N}$.

Theorem If $\{I_n\}$ is a nested sequence of nonempty closed bounded intervals, then the intersection $\bigcap_{n \in \mathbb{N}} I_n$ is nonempty. Moreover, if lengths $|I_n|$ of the intervals satisfy $|I_n| \to 0$ as $n \to \infty$, then the intersection consists of a single point.

Remark 1. The theorem may not hold if the intervals I_1, I_2, \ldots are open. Counterexample: $I_n = (0, 1/n), n \in \mathbb{N}$. The intervals are nested and bounded, but their intersection is empty since $1/n \to 0$ as $n \to \infty$.

Remark 2. The theorem may not hold if the intervals I_1, I_2, \ldots are not bounded. Counterexample: $I_n = [n, \infty)$, $n \in \mathbb{N}$. The intervals are nested and closed, but their intersection is empty since the sequence $\{n\}$ diverges to $+\infty$.

Proof of the theorem

Let $I_n = [a_n, b_n]$, $n = 1, 2, \dots$ Since the sequence $\{I_n\}$ is nested, it follows that the sequence $\{a_n\}$ is nondecreasing while $\{b_n\}$ is nonincreasing. Besides, both sequences are bounded (since both are contained in the interval I_1). Hence both are convergent: $a_n \rightarrow a$ and $b_n \rightarrow b$ as $n \rightarrow \infty$. Since $a_n < b_n$ for all $n \in \mathbb{N}$, the Comparison Theorem implies that $a \leq b$. We claim that $\bigcap_{n \in \mathbb{N}} I_n = [a, b]$. Indeed, we have $a_n \leq a$ for all $n \in \mathbb{N}$ (by the Comparison Theorem applied to a_1, a_2, \ldots and the constant sequence a_n, a_n, a_n, \ldots). Similarly, $b < b_n$ for all $n \in \mathbb{N}$. Therefore [a, b] is contained in the intersection. On the other hand, if x < a then $x < a_n$ for some *n* so that $x \notin I_n$. Similarly, if x > b then $x > b_m$ for some *m* so that $x \notin I_m$. This proves the claim. Clearly, the length of [a, b] cannot exceed $|I_n|$ for any $n \in \mathbb{N}$. Therefore $|I_n| \to 0$ as $n \to \infty$ implies that [a, b] is a degenerate interval: a = b.

Bolzano-Weierstrass Theorem

Theorem Every bounded sequence of real numbers has a convergent subsequence.

Proof: Let $\{x_n\}$ be a bounded sequence of real numbers. We are going to build a nested sequence of intervals $I_n = [a_n, b_n]$, $n = 1, 2, \ldots$, such that each I_n contains infinitely many elements of $\{x_n\}$ and $|I_{n+1}| = |I_n|/2$ for all $n \in \mathbb{N}$. The sequence is built inductively. First we set I_1 to be any closed bounded interval that contains all elements of $\{x_n\}$ (such an interval exists since the sequence $\{x_n\}$ is bounded). Now assume that for some $n \in \mathbb{N}$ the interval I_n is already chosen and it contains infinitely many elements of the sequence $\{x_n\}$. Then at least one of the subintervals $I' = [a_n, (a_n + b_n)/2)]$ and $I'' = [(a_n + b_n)/2, b_n]$ also contains infinitely many elements of $\{x_n\}$. We set I_{n+1} to be such a subinterval. By construction, $I_{n+1} \subset I_n$ and $|I_{n+1}| = |I_n|/2$.

Proof (continued): Since $|I_{n+1}| = |I_n|/2$ for all $n \in \mathbb{N}$, it follows by induction that $|I_n| = |I_1|/2^{n-1}$ for all $n \in \mathbb{N}$. As a consequence, $|I_n| \to 0$ as $n \to \infty$. By the nested intervals property, the intersection of the intervals I_1, I_2, I_3, \ldots consists of a single number *a*.

Next we are going to build a strictly increasing sequence of natural numbers n_1, n_2, \ldots such that $x_{n_k} \in I_k$ for all $k \in \mathbb{N}$. The sequence is built inductively. First we choose n_1 so that $x_{n_1} \in I_1$. Now assume that for some $k \in \mathbb{N}$ the number n_k is already chosen. Since the interval I_{k+1} contains infinitely many elements of the sequence $\{x_n\}$, there exists $m > n_k$ such that $x_m \in I_{k+1}$. We set $n_{k+1} = m$.

Now we claim that the subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ of the sequence $\{x_n\}$ converges to a. Indeed, for any $k\in\mathbb{N}$ the points x_{n_k} and a both belong to the interval I_k . Hence $|x_{n_k} - a| \leq |I_k|$. Since $|I_k| \to 0$ as $k \to \infty$, it follows that $x_{n_k} \to a$ as $k \to \infty$.

Theorem Any sequence of real numbers has a monotonic subsequence.

Proof: Let $\{x_n\}$ be a sequence of real numbers. We call a natural number m a **turn-back index** for this sequence if $x_m \ge x_n$ for all n > m. Let us consider two possible cases. **Case 1**: there are infinitely many turn-back indices. Let m_1, m_2, m_3, \ldots be the list of all turn-back indices arranged in ascending order. Then $x_{m_1}, x_{m_2}, x_{m_3}, \ldots$ is a subsequence of $\{x_n\}$. By definition of a turn-back index, this subsequence is nonincreasing.

Case 2: there are only finitely many turn-back indices. In this case, there exists $M \in \mathbb{N}$ that is greater than any turn-back index. Now we can build inductively an increasing sequence of natural numbers $m_1 < m_2 < m_3 < \ldots$ such that $m_1 = M$ and $x_{m_{n+1}} > x_{m_n}$ for all $n \ge 1$ (the choice of m_{n+1} is always possible since m_n is not a turn-back index). By construction, $\{x_{m_n}\}$ is an increasing subsequence of the original sequence.

Cauchy sequences

Definition. A sequence $\{x_n\}$ of real numbers is called a **Cauchy sequence** if for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < \varepsilon$ whenever $n, m \ge N$.

Theorem Any convergent sequence is Cauchy.

Proof: Let $\{x_n\}$ be a convergent sequence and *a* be its limit. Then for any $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $|x_n - a| < \varepsilon/2$ whenever $n \ge N$. Now for any natural numbers $n, m \ge N$ we have $|x_n - x_m| = |x_n - a + a - x_m| \le |x_n - a| + |x_m - a| < \varepsilon/2 + \varepsilon/2 = \varepsilon$. Thus $\{x_n\}$ is a Cauchy sequence.

Theorem Any Cauchy sequence is convergent.

Proof: Suppose $\{x_n\}$ is a Cauchy sequence. First let us show that this sequence is bounded. Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $|x_n - x_m| < 1$ whenever $n, m \ge N$. In particular, $|x_n - x_N| < 1$ for all $n \ge N$. Then $|x_n| = |(x_n - x_N) + x_N| \le |x_n - x_N| + |x_N| < |x_N| + 1$. It follows that for any $n \in \mathbb{N}$ we have $|x_n| \le M$, where $M = \max(|x_1|, |x_2|, \dots, |x_{N-1}|, |x_N| + 1)$.

Now the Bolzano-Weierstrass theorem implies that $\{x_n\}$ has a subsequence $\{x_{n_k}\}_{k\in\mathbb{N}}$ converging to some $a\in\mathbb{R}$. Given $\varepsilon > 0$, there exists $K_{\varepsilon}\in\mathbb{N}$ such that $|x_{n_k}-a|<\varepsilon/2$ for all $k\geq K_{\varepsilon}$. Also, there exists $N_{\varepsilon}\in\mathbb{N}$ such that $|x_n-x_m|<\varepsilon/2$ whenever $n,m\geq N_{\varepsilon}$. Let $k=\max(K_{\varepsilon},N_{\varepsilon})$. Then $k\geq K_{\varepsilon}$ and $n_k\geq k\geq N_{\varepsilon}$. Therefore for any $n\geq N_{\varepsilon}$ we obtain $|x_n-a|=|(x_n-x_{n_k})+(x_{n_k}-a)|\leq |x_n-x_{n_k}|+|x_{n_k}-a|<\varepsilon/2+\varepsilon/2=\varepsilon$. Thus the entire sequence $\{x_n\}$ converges to a.