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Advanced Calculus I

Lecture 12:

Bolzano-Weierstrass theorem.

Cauchy sequences.



Nested intervals property

Definition. A sequence of sets I1, I2, . . . is called nested if
I1 ⊃ I2 ⊃ . . . , that is, In ⊃ In+1 for all n ∈ N.

Theorem If {In} is a nested sequence of nonempty closed
bounded intervals, then the intersection

⋂
n∈N

In is nonempty.
Moreover, if lengths |In| of the intervals satisfy |In| → 0 as
n → ∞, then the intersection consists of a single point.

Remark 1. The theorem may not hold if the intervals
I1, I2, . . . are open. Counterexample: In = (0, 1/n), n ∈ N.
The intervals are nested and bounded, but their intersection is
empty since 1/n → 0 as n → ∞.

Remark 2. The theorem may not hold if the intervals
I1, I2, . . . are not bounded. Counterexample: In = [n,∞),
n ∈ N. The intervals are nested and closed, but their
intersection is empty since the sequence {n} diverges to +∞.



Proof of the theorem

Let In = [an, bn], n = 1, 2, . . . Since the sequence {In} is
nested, it follows that the sequence {an} is nondecreasing
while {bn} is nonincreasing. Besides, both sequences are
bounded (since both are contained in the interval I1). Hence
both are convergent: an → a and bn → b as n → ∞. Since
an ≤ bn for all n ∈ N, the Comparison Theorem implies that
a ≤ b. We claim that

⋂
n∈N

In = [a, b]. Indeed, we have
an ≤ a for all n ∈ N (by the Comparison Theorem applied to
a1, a2, . . . and the constant sequence an, an, an . . . ).
Similarly, b ≤ bn for all n ∈ N. Therefore [a, b] is contained
in the intersection. On the other hand, if x < a then x < an
for some n so that x /∈ In. Similarly, if x > b then x > bm
for some m so that x /∈ Im. This proves the claim.

Clearly, the length of [a, b] cannot exceed |In| for any n ∈ N.
Therefore |In| → 0 as n → ∞ implies that [a, b] is a
degenerate interval: a = b.



Bolzano-Weierstrass Theorem

Theorem Every bounded sequence of real numbers

has a convergent subsequence.

Proof: Let {xn} be a bounded sequence of real numbers. We
are going to build a nested sequence of intervals In = [an, bn],
n = 1, 2, . . . , such that each In contains infinitely many
elements of {xn} and |In+1| = |In|/2 for all n ∈ N. The
sequence is built inductively. First we set I1 to be any closed
bounded interval that contains all elements of {xn} (such an
interval exists since the sequence {xn} is bounded). Now
assume that for some n ∈ N the interval In is already chosen
and it contains infinitely many elements of the sequence {xn}.
Then at least one of the subintervals I ′ = [an, (an + bn)/2)]
and I ′′ = [(an + bn)/2, bn] also contains infinitely many
elements of {xn}. We set In+1 to be such a subinterval. By
construction, In+1 ⊂ In and |In+1| = |In|/2.



Proof (continued): Since |In+1| = |In|/2 for all n ∈ N, it
follows by induction that |In| = |I1|/2

n−1 for all n ∈ N. As a
consequence, |In| → 0 as n → ∞. By the nested intervals
property, the intersection of the intervals I1, I2, I3, . . . consists
of a single number a.

Next we are going to build a strictly increasing sequence of
natural numbers n1, n2, . . . such that xnk ∈ Ik for all k ∈ N.
The sequence is built inductively. First we choose n1 so that
xn1 ∈ I1. Now assume that for some k ∈ N the number nk is
already chosen. Since the interval Ik+1 contains infinitely
many elements of the sequence {xn}, there exists m > nk
such that xm ∈ Ik+1. We set nk+1 = m.

Now we claim that the subsequence {xnk}k∈N of the sequence
{xn} converges to a. Indeed, for any k ∈ N the points xnk
and a both belong to the interval Ik . Hence |xnk − a| ≤ |Ik |.
Since |Ik | → 0 as k → ∞, it follows that xnk → a as
k → ∞.



Theorem Any sequence of real numbers has a

monotonic subsequence.

Proof: Let {xn} be a sequence of real numbers. We call a
natural number m a turn-back index for this sequence if
xm ≥ xn for all n > m. Let us consider two possible cases.

Case 1: there are infinitely many turn-back indices.
Let m1,m2,m3, . . . be the list of all turn-back indices
arranged in ascending order. Then xm1

, xm2
, xm3

, . . . is a
subsequence of {xn}. By definition of a turn-back index, this
subsequence is nonincreasing.

Case 2: there are only finitely many turn-back indices. In this
case, there exists M ∈ N that is greater than any turn-back
index. Now we can build inductively an increasing sequence of
natural numbers m1 < m2 < m3 < . . . such that m1 = M
and xmn+1

> xmn
for all n ≥ 1 (the choice of mn+1 is always

possible since mn is not a turn-back index). By construction,
{xmn

} is an increasing subsequence of the original sequence.



Cauchy sequences

Definition. A sequence {xn} of real numbers is

called a Cauchy sequence if for any ε > 0 there
exists N ∈ N such that |xn − xm| < ε whenever
n,m ≥ N .

Theorem Any convergent sequence is Cauchy.

Proof: Let {xn} be a convergent sequence and a be its limit.
Then for any ε > 0 there exists N ∈ N such that
|xn − a| < ε/2 whenever n ≥ N. Now for any natural
numbers n,m ≥ N we have

|xn−xm| = |xn−a+a−xm| ≤ |xn−a|+|xm−a| < ε/2+ε/2 = ε.

Thus {xn} is a Cauchy sequence.



Theorem Any Cauchy sequence is convergent.

Proof: Suppose {xn} is a Cauchy sequence. First let us show
that this sequence is bounded. Since {xn} is Cauchy, there
exists N ∈ N such that |xn − xm| < 1 whenever n,m ≥ N.
In particular, |xn − xN | < 1 for all n ≥ N. Then
|xn| = |(xn − xN) + xN | ≤ |xn − xN |+ |xN| < |xN |+ 1.
It follows that for any n ∈ N we have |xn| ≤ M , where
M = max(|x1|, |x2|, . . . , |xN−1|, |xN|+ 1).

Now the Bolzano-Weierstrass theorem implies that {xn} has a
subsequence {xnk}k∈N converging to some a ∈ R. Given
ε > 0, there exists Kε ∈ N such that |xnk − a| < ε/2 for all
k ≥ Kε. Also, there exists Nε ∈ N such that |xn − xm| < ε/2
whenever n,m ≥ Nε. Let k = max(Kε,Nε). Then k ≥ Kε

and nk ≥ k ≥ Nε. Therefore for any n ≥ Nε we obtain
|xn − a| = |(xn − xnk ) + (xnk − a)| ≤ |xn − xnk |+ |xnk − a| <
ε/2+ ε/2 = ε. Thus the entire sequence {xn} converges to a.


