MATH 409
 Advanced Calculus I

Lecture 12:
 Bolzano-Weierstrass theorem.
 Cauchy sequences.

Nested intervals property

Definition. A sequence of sets I_{1}, l_{2}, \ldots is called nested if $I_{1} \supset I_{2} \supset \ldots$, that is, $I_{n} \supset I_{n+1}$ for all $n \in \mathbb{N}$.

Theorem If $\left\{I_{n}\right\}$ is a nested sequence of nonempty closed bounded intervals, then the intersection $\bigcap_{n \in \mathbb{N}} I_{n}$ is nonempty. Moreover, if lengths $\left|I_{n}\right|$ of the intervals satisfy $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$, then the intersection consists of a single point.

Remark 1. The theorem may not hold if the intervals I_{1}, I_{2}, \ldots are open. Counterexample: $I_{n}=(0,1 / n), n \in \mathbb{N}$. The intervals are nested and bounded, but their intersection is empty since $1 / n \rightarrow 0$ as $n \rightarrow \infty$.

Remark 2. The theorem may not hold if the intervals I_{1}, I_{2}, \ldots are not bounded. Counterexample: $I_{n}=[n, \infty)$, $n \in \mathbb{N}$. The intervals are nested and closed, but their intersection is empty since the sequence $\{n\}$ diverges to $+\infty$.

Proof of the theorem

Let $I_{n}=\left[a_{n}, b_{n}\right], n=1,2, \ldots$. Since the sequence $\left\{I_{n}\right\}$ is nested, it follows that the sequence $\left\{a_{n}\right\}$ is nondecreasing while $\left\{b_{n}\right\}$ is nonincreasing. Besides, both sequences are bounded (since both are contained in the interval I_{1}). Hence both are convergent: $a_{n} \rightarrow a$ and $b_{n} \rightarrow b$ as $n \rightarrow \infty$. Since $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, the Comparison Theorem implies that $a \leq b$. We claim that $\bigcap_{n \in \mathbb{N}} I_{n}=[a, b]$. Indeed, we have $a_{n} \leq a$ for all $n \in \mathbb{N}$ (by the Comparison Theorem applied to a_{1}, a_{2}, \ldots and the constant sequence $\left.a_{n}, a_{n}, a_{n} \ldots\right)$.
Similarly, $b \leq b_{n}$ for all $n \in \mathbb{N}$. Therefore $[a, b]$ is contained in the intersection. On the other hand, if $x<a$ then $x<a_{n}$ for some n so that $x \notin I_{n}$. Similarly, if $x>b$ then $x>b_{m}$ for some m so that $x \notin I_{m}$. This proves the claim.
Clearly, the length of $[a, b]$ cannot exceed $\left|I_{n}\right|$ for any $n \in \mathbb{N}$. Therefore $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$ implies that $[a, b]$ is a degenerate interval: $a=b$.

Bolzano-Weierstrass Theorem

Theorem Every bounded sequence of real numbers has a convergent subsequence.
Proof: Let $\left\{x_{n}\right\}$ be a bounded sequence of real numbers. We are going to build a nested sequence of intervals $I_{n}=\left[a_{n}, b_{n}\right]$, $n=1,2, \ldots$, such that each I_{n} contains infinitely many elements of $\left\{x_{n}\right\}$ and $\left|I_{n+1}\right|=\left|I_{n}\right| / 2$ for all $n \in \mathbb{N}$. The sequence is built inductively. First we set I_{1} to be any closed bounded interval that contains all elements of $\left\{x_{n}\right\}$ (such an interval exists since the sequence $\left\{x_{n}\right\}$ is bounded). Now assume that for some $n \in \mathbb{N}$ the interval I_{n} is already chosen and it contains infinitely many elements of the sequence $\left\{x_{n}\right\}$. Then at least one of the subintervals $\left.I^{\prime}=\left[a_{n},\left(a_{n}+b_{n}\right) / 2\right)\right]$ and $I^{\prime \prime}=\left[\left(a_{n}+b_{n}\right) / 2, b_{n}\right]$ also contains infinitely many elements of $\left\{x_{n}\right\}$. We set I_{n+1} to be such a subinterval. By construction, $I_{n+1} \subset I_{n}$ and $\left|I_{n+1}\right|=\left|I_{n}\right| / 2$.

Proof (continued): Since $\left|I_{n+1}\right|=\left|I_{n}\right| / 2$ for all $n \in \mathbb{N}$, it follows by induction that $\left|I_{n}\right|=\left|I_{1}\right| / 2^{n-1}$ for all $n \in \mathbb{N}$. As a consequence, $\left|I_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$. By the nested intervals property, the intersection of the intervals $I_{1}, I_{2}, I_{3}, \ldots$ consists of a single number a.

Next we are going to build a strictly increasing sequence of natural numbers n_{1}, n_{2}, \ldots such that $x_{n_{k}} \in I_{k}$ for all $k \in \mathbb{N}$. The sequence is built inductively. First we choose n_{1} so that $x_{n_{1}} \in I_{1}$. Now assume that for some $k \in \mathbb{N}$ the number n_{k} is already chosen. Since the interval I_{k+1} contains infinitely many elements of the sequence $\left\{x_{n}\right\}$, there exists $m>n_{k}$ such that $x_{m} \in I_{k+1}$. We set $n_{k+1}=m$.

Now we claim that the subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ of the sequence $\left\{x_{n}\right\}$ converges to a. Indeed, for any $k \in \mathbb{N}$ the points $x_{n_{k}}$ and a both belong to the interval I_{k}. Hence $\left|x_{n_{k}}-a\right| \leq\left|I_{k}\right|$. Since $\left|I_{k}\right| \rightarrow 0$ as $k \rightarrow \infty$, it follows that $x_{n_{k}} \rightarrow a$ as $k \rightarrow \infty$.

Theorem Any sequence of real numbers has a monotonic subsequence.

Proof: Let $\left\{x_{n}\right\}$ be a sequence of real numbers. We call a natural number m a turn-back index for this sequence if $x_{m} \geq x_{n}$ for all $n>m$. Let us consider two possible cases.
Case 1: there are infinitely many turn-back indices. Let $m_{1}, m_{2}, m_{3}, \ldots$ be the list of all turn-back indices arranged in ascending order. Then $x_{m_{1}}, x_{m_{2}}, x_{m_{3}}, \ldots$ is a subsequence of $\left\{x_{n}\right\}$. By definition of a turn-back index, this subsequence is nonincreasing.
Case 2: there are only finitely many turn-back indices. In this case, there exists $M \in \mathbb{N}$ that is greater than any turn-back index. Now we can build inductively an increasing sequence of natural numbers $m_{1}<m_{2}<m_{3}<\ldots$ such that $m_{1}=M$ and $x_{m_{n+1}}>x_{m_{n}}$ for all $n \geq 1$ (the choice of m_{n+1} is always possible since m_{n} is not a turn-back index). By construction, $\left\{x_{m_{n}}\right\}$ is an increasing subsequence of the original sequence.

Cauchy sequences

Definition. A sequence $\left\{x_{n}\right\}$ of real numbers is called a Cauchy sequence if for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon$ whenever $n, m \geq N$.

Theorem Any convergent sequence is Cauchy.
Proof: Let $\left\{x_{n}\right\}$ be a convergent sequence and a be its limit.
Then for any $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $\left|x_{n}-a\right|<\varepsilon / 2$ whenever $n \geq N$. Now for any natural numbers $n, m \geq N$ we have
$\left|x_{n}-x_{m}\right|=\left|x_{n}-a+a-x_{m}\right| \leq\left|x_{n}-a\right|+\left|x_{m}-a\right|<\varepsilon / 2+\varepsilon / 2=\varepsilon$.
Thus $\left\{x_{n}\right\}$ is a Cauchy sequence.

Theorem Any Cauchy sequence is convergent.

Proof: Suppose $\left\{x_{n}\right\}$ is a Cauchy sequence. First let us show that this sequence is bounded. Since $\left\{x_{n}\right\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<1$ whenever $n, m \geq N$. In particular, $\left|x_{n}-x_{N}\right|<1$ for all $n \geq N$. Then $\left|x_{n}\right|=\left|\left(x_{n}-x_{N}\right)+x_{N}\right| \leq\left|x_{n}-x_{N}\right|+\left|x_{N}\right|<\left|x_{N}\right|+1$. It follows that for any $n \in \mathbb{N}$ we have $\left|x_{n}\right| \leq M$, where $M=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{N-1}\right|,\left|x_{N}\right|+1\right)$.
Now the Bolzano-Weierstrass theorem implies that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}_{k \in \mathbb{N}}$ converging to some $a \in \mathbb{R}$. Given $\varepsilon>0$, there exists $K_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n_{k}}-a\right|<\varepsilon / 2$ for all $k \geq K_{\varepsilon}$. Also, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\varepsilon / 2$ whenever $n, m \geq N_{\varepsilon}$. Let $k=\max \left(K_{\varepsilon}, N_{\varepsilon}\right)$. Then $k \geq K_{\varepsilon}$ and $n_{k} \geq k \geq N_{\varepsilon}$. Therefore for any $n \geq N_{\varepsilon}$ we obtain $\left|x_{n}-a\right|=\left|\left(x_{n}-x_{n_{k}}\right)+\left(x_{n_{k}}-a\right)\right| \leq\left|x_{n}-x_{n_{k}}\right|+\left|x_{n_{k}}-a\right|<$ $\varepsilon / 2+\varepsilon / 2=\varepsilon$. Thus the entire sequence $\left\{x_{n}\right\}$ converges to a.

