MATH 409 Advanced Calculus I Lecture 13: Limit points. Upper and lower limits.

Limit points

Definition. A limit point (or subsequential limit or cluster **point**) of a sequence $\{x_n\}$ is the limit of any convergent subsequence of $\{x_n\}$.

Recall that the ε -neighborhood of a point $a \in \mathbb{R}$ is the interval $(a - \varepsilon, a + \varepsilon)$. For any finite collection of distinct points $a_1, a_2, \ldots, a_k \in \mathbb{R}$ there exists $\varepsilon > 0$ such that the ε -neighborhoods of all those points are disjoint.

Theorem 1 A point $a \in \mathbb{R}$ is the limit of a sequence $\{x_n\}$ of real numbers if and only if any ε -neighborhood of a contains *all but finitely many* terms of the sequence (counting with repetitions).

Theorem 2 A point $a \in \mathbb{R}$ is a limit point of a sequence $\{x_n\}$ of real numbers if and only if any ε -neighborhood of a contains *infinitely many* terms of the sequence (counting with repetitions).

Limit points

Examples and properties:

- A convergent sequence has only one limit point, its limit.
- Any bounded sequence has at least one limit point.

• If a bounded sequence is not convergent, then it has at least two limit points.

• The sequence $1, -1, 1, -1, 1, -1, \ldots$ has two limit points, 1 and -1.

• If all elements of a sequence belong to a closed interval [a, b], then all its limit points belong to [a, b] as well.

• The sequence $\{x_n\}$, where $x_n = \{n\sqrt{2}\}$ (fractional part of $n\sqrt{2}$) fills densely the interval (0, 1) (due to Jacobi's Theorem). Hence the set of its limit points is [0, 1].

• The set of limit points of the sequence $\{\sin n\}$ is the entire interval [-1, 1].

Extended real line

The extended real line $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\}$ is obtained by adding to \mathbb{R} two extra points "at infinity". By definition, the ε -neighborhood of $+\infty$ is $(1/\varepsilon, \infty)$ and the ε -neighborhood of $-\infty$ is $(-\infty, -1/\varepsilon)$. Then divergence to $+\infty$ or $-\infty$ can be understood as convergence in $\overline{\mathbb{R}}$. In particular, $+\infty$ and $-\infty$ can be limit points now.

More examples and properties:

• If a sequence diverges to $+\infty$ or $-\infty,$ then this is its only limit point in $\overline{\mathbb{R}}.$

• Any sequence has at least one limit point in $\overline{\mathbb{R}}$.

• A sequence $\{x_n\}$ has no finite limit points if and only if $|x_n| \to \infty$ as $n \to \infty$.

• If a sequence has only finitely many limit points, then it can be decomposed into finitely many convergent (in $\overline{\mathbb{R}}$) subsequences.

Upper and lower limits

Let $\{x_n\}$ be a bounded sequence of real numbers. For any $n \in \mathbb{N}$ let E_n denote the set of all numbers of the form x_k , where $k \ge n$. The set E_n is bounded, hence $\sup E_n$ and $\inf E_n$ exist. Observe that the sequence $\{\sup E_n\}$ is nonincreasing, the sequence $\{\inf E_n\}$ is nondecreasing (since E_1, E_2, \ldots are nested sets), and both are bounded. Therefore both sequences are convergent.

Definition. The limit of $\{\sup E_n\}$ is called the **limit supremum** of the sequence $\{x_n\}$ and denoted $\limsup_{n\to\infty} x_n$.

The limit of $\{\inf E_n\}$ is called the **limit infimum** of the sequence $\{x_n\}$ and denoted $\liminf_{n\to\infty} x_n$.

Properties of lim sup and lim inf.

- $\liminf_{n\to\infty} x_n \leq \limsup_{n\to\infty} x_n$.
- If $C > \limsup_{\substack{n \to \infty \\ n \to \infty}} x_n$, then C is an **eventual upper bound** for $\{x_n\}$, which means that $x_n \le C$ when n large enough. If $C < \limsup_{\substack{n \to \infty \\ n \to \infty}} x_n$, then C is not an eventual upper bound.
 - $\liminf_{n\to\infty} x_n$ and $\limsup_{n\to\infty} x_n$ are limit points of $\{x_n\}$.
 - All limit points of $\{x_n\}$ are contained in the interval $\begin{bmatrix} \liminf_{n \to \infty} x_n, \limsup_{n \to \infty} x_n \end{bmatrix}$.

• The sequence $\{x_n\}$ converges to a limit a if and only if $\liminf_{n\to\infty} x_n = \limsup_{n\to\infty} x_n = a$.