MATH 409
 Advanced Calculus I

Lecture 14:
 Convergence of infinite series.

Infinite series

Definition. Given a sequence $\left\{a_{n}\right\}$ of real numbers, an expression $a_{1}+a_{2}+\cdots+a_{n}+\cdots$ or $\sum_{n=1}^{\infty} a_{n}$ is called an infinite series with terms a_{n}. The partial sum of order n of the series is defined by $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$. If the sequence $\left\{s_{n}\right\}$ converges to a limit $s \in \mathbb{R}$, we say that the series converges to s or that s is the sum of the series and write $\sum_{n=1}^{\infty} a_{n}=s$. Otherwise the series diverges.

Theorem (Cauchy Criterion) An infinite series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $m \geq n \geq N$ implies $\left|a_{n}+a_{n+1}+\cdots+a_{m}\right|<\varepsilon$.
Proof: Let $\left\{s_{n}\right\}$ be the sequence of partial sums. Then $a_{n}+a_{n+1}+\cdots+a_{m}=s_{m}-s_{n-1}$. Consequently, the condition of the theorem is equivalent to the condition that $\left\{s_{n}\right\}$ be a Cauchy sequence. As we know, a sequence is convergent if and only if it is a Cauchy sequence.

Examples

- $\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n}}+\cdots=1$.

The partial sums s_{n} of this series satisfy $s_{n}=1-2^{-n}$ for all $n \in \mathbb{N}$. Thus $s_{n} \rightarrow 1$ as $n \rightarrow \infty$.

- $\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\cdots=1$.

Since $\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$, the partial sums s_{n} of this series satisfy $s_{n}=1-\frac{1}{n+1}$. Thus $s_{n} \rightarrow 1$ as $n \rightarrow \infty$.

- $\sum_{n=1}^{\infty}(-1)^{n}=-1+1-1+\ldots$ diverges.

The partial sums s_{n} satisfy $s_{n}=-1$ for odd n and $s_{n}=0$ for even n. Hence the sequence $\left\{s_{n}\right\}$ has no limit.

Some properties of infinite series

Theorem (Trivial Test) If the terms of an infinite series do not converge to zero, then the series diverges.

Theorem If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, then

$$
\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}
$$

and

$$
\sum_{n=1}^{\infty}\left(r a_{n}\right)=r \sum_{n=1}^{\infty} a_{n}
$$

for any $r \in \mathbb{R}$.
Theorem If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series, and $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$, then

$$
\sum_{n=1}^{\infty} a_{n} \leq \sum_{n=1}^{\infty} b_{n}
$$

Example

- The geometric series $\sum_{n=0}^{\infty} x^{n}$ converges if and only if $|x|<1$, in which case its sum is $\frac{1}{1-x}$.

In the case $|x| \geq 1$, the series fails the Trivial Test. For any $x \neq 1$, the partial sums s_{n} of the geometric series satisfy

$$
s_{n}=1+x+x^{2}+\cdots+x^{n}=\frac{1-x^{n+1}}{1-x}
$$

In the case $|x|<1$, we obtain that $s_{n} \rightarrow 1 /(1-x)$ as $n \rightarrow \infty$.

Series with nonnegative terms

Suppose that a series $\sum_{n=1}^{\infty} a_{n}$ has nonnegative terms, $a_{n} \geq 0$ for all $n \in \mathbb{N}$. Then the sequence of partial sums $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ is nondecreasing. It follows that $\left\{s_{n}\right\}$ converges to a finite limit if bounded and diverges to $+\infty$ otherwise. In the latter case, we write $\sum_{n=1}^{\infty} a_{n}=\infty$.

Theorem (Direct Comparison Test) Suppose that $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$ and $a_{n} \leq b_{n}$ for large n. Then convergence of the series $\sum_{n=1}^{\infty} b_{n}$ implies convergence of $\sum_{n=1}^{\infty} a_{n}$ while $\sum_{n=1}^{\infty} a_{n}=\infty$ implies $\sum_{n=1}^{\infty} b_{n}=\infty$.
Proof: Since changing a finite number of terms does not affect convergence of a series, it is no loss to assume that $a_{n} \leq b_{n}$ for all $n \in \mathbb{N}$. Then the partial sums $s_{n}=\sum_{k=1}^{n} a_{k}$ and $t_{n}=\sum_{k=1}^{n} b_{k}$ satisfy $s_{n} \leq t_{n}$ for all n. Consequently, if $s_{n} \rightarrow+\infty$ as $n \rightarrow \infty$, then also $t_{n} \rightarrow+\infty$ as $n \rightarrow \infty$. Conversely, if $\left\{t_{n}\right\}$ is bounded, then so is $\left\{s_{n}\right\}$.

Examples

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}} \text { converges. }
$$

Indeed, $0<\frac{1}{n^{2}}<\frac{1}{n(n-1)}$ for all $n \geq 2$. Since the series $\sum_{n=2}^{\infty} \frac{1}{n(n-1)}=\sum_{k=1}^{\infty} \frac{1}{k(k+1)}$ is convergent, it remains to apply the Direct Comparison Test.

- $\sum_{n=1}^{\infty} e^{-n^{2}}$ converges.

We have $0<e^{-n^{2}} \leq e^{-n}$ for all $n \in \mathbb{N}$. The geometric series $\sum_{n=1}^{\infty} e^{-n}$ is convergent since $0<e^{-1}<1$. By the Direct Comparison Test, $\sum_{n=1}^{\infty} e^{-n^{2}}$ is convergent as well.

