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Lecture 14:
Convergence of infinite series.



Infinite series

Definition. Given a sequence {an} of real numbers, an
expression a1 + a2 + · · ·+ an + · · · or

∑
∞

n=1 an is called an
infinite series with terms an. The partial sum of order n of
the series is defined by sn = a1 + a2 + · · ·+ an. If the
sequence {sn} converges to a limit s ∈ R, we say that the
series converges to s or that s is the sum of the series and
write

∑
∞

n=1 an = s. Otherwise the series diverges.

Theorem (Cauchy Criterion) An infinite series
∑

∞

n=1 an

converges if and only if for every ε > 0 there exists N ∈ N

such that m ≥ n ≥ N implies |an + an+1 + · · ·+ am| < ε.

Proof: Let {sn} be the sequence of partial sums. Then
an + an+1 + · · ·+ am = sm − sn−1. Consequently, the
condition of the theorem is equivalent to the condition that
{sn} be a Cauchy sequence. As we know, a sequence is
convergent if and only if it is a Cauchy sequence.



Examples

•
1

2
+

1

22
+ · · ·+

1

2n
+ · · · = 1.

The partial sums sn of this series satisfy sn = 1− 2−n for all
n ∈ N. Thus sn → 1 as n → ∞.

•
1

1 · 2
+

1

2 · 3
+ · · ·+

1

n(n + 1)
+ · · · = 1.

Since 1
n(n+1)

= 1
n
− 1

n+1
, the partial sums sn of this series

satisfy sn = 1− 1
n+1

. Thus sn → 1 as n → ∞.

•
∑∞

n=1
(−1)n = −1 + 1− 1 + . . . diverges.

The partial sums sn satisfy sn = − 1 for odd n and sn = 0
for even n. Hence the sequence {sn} has no limit.



Some properties of infinite series

Theorem (Trivial Test) If the terms of an infinite series do
not converge to zero, then the series diverges.

Theorem If
∑

∞

n=1 an and
∑

∞

n=1 bn are convergent series,
then ∑

∞

n=1
(an + bn) =

∑
∞

n=1
an +

∑
∞

n=1
bn

and ∑
∞

n=1
(ran) = r

∑
∞

n=1
an

for any r ∈ R.

Theorem If
∑

∞

n=1 an and
∑

∞

n=1 bn are convergent series,
and an ≤ bn for all n ∈ N, then∑

∞

n=1
an ≤

∑
∞

n=1
bn.



Example

• The geometric series
∑∞

n=0
x
n converges if

and only if |x | < 1, in which case its sum is
1

1− x
.

In the case |x | ≥ 1, the series fails the Trivial Test. For any
x 6= 1, the partial sums sn of the geometric series satisfy

sn = 1 + x + x
2 + · · ·+ x

n =
1− x

n+1

1− x
.

In the case |x | < 1, we obtain that sn → 1/(1− x) as
n → ∞.



Series with nonnegative terms

Suppose that a series
∑

∞

n=1 an has nonnegative terms,
an ≥ 0 for all n ∈ N. Then the sequence of partial sums
sn = a1 + a2 + · · ·+ an is nondecreasing. It follows that {sn}
converges to a finite limit if bounded and diverges to +∞
otherwise. In the latter case, we write

∑
∞

n=1 an = ∞.

Theorem (Direct Comparison Test) Suppose that
an, bn ≥ 0 for all n ∈ N and an ≤ bn for large n. Then
convergence of the series

∑
∞

n=1 bn implies convergence of∑
∞

n=1 an while
∑

∞

n=1 an = ∞ implies
∑

∞

n=1 bn = ∞.

Proof: Since changing a finite number of terms does not
affect convergence of a series, it is no loss to assume that
an ≤ bn for all n ∈ N. Then the partial sums sn =

∑
n

k=1 ak

and tn =
∑

n

k=1 bk satisfy sn ≤ tn for all n. Consequently, if
sn → +∞ as n → ∞, then also tn → +∞ as n → ∞.
Conversely, if {tn} is bounded, then so is {sn}.



Examples

•
∑∞

n=1

1

n2
converges.

Indeed, 0 <
1

n2
<

1

n(n − 1)
for all n ≥ 2. Since the series

∞∑

n=2

1

n(n − 1)
=

∞∑

k=1

1

k(k + 1)
is convergent, it remains to

apply the Direct Comparison Test.

•
∑∞

n=1
e
−n

2

converges.

We have 0 < e
−n

2
≤ e

−n for all n ∈ N. The geometric series∑
∞

n=1 e
−n is convergent since 0 < e

−1 < 1. By the Direct

Comparison Test,
∑

∞

n=1 e
−n

2
is convergent as well.


