MATH 409
 Advanced Calculus I

Lecture 15:
 Tests for convergence.

Convergence of infinite series

[Cauchy Criterion] An infinite series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that $m \geq n \geq N$ implies $\left|a_{n}+a_{n+1}+\cdots+a_{m}\right|<\varepsilon$.
[Trivial Test] If the terms of an infinite series do not converge to zero, then the series diverges.
[Series with nonnegative terms] A series $\sum_{n=1}^{\infty} a_{n}$ with nonnegative terms converges if and only if the sequence of partial sums $s_{n}=a_{1}+a_{2}+\cdots+a_{n}$ is bounded above.
[Direct Comparison Test] Suppose that $a_{n}, b_{n} \geq 0$ for all $n \in \mathbb{N}$ and $a_{n} \leq b_{n}$ for large n. Then convergence of the series $\sum_{n=1}^{\infty} b_{n}$ implies convergence of $\sum_{n=1}^{\infty} a_{n}$ while $\sum_{n=1}^{\infty} a_{n}=\infty$ implies $\sum_{n=1}^{\infty} b_{n}=\infty$.

Harmonic series

- $\sum_{n=1}^{\infty} \frac{1}{n}=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}+\ldots$ diverges.

Indeed,
$\frac{1}{3}+\frac{1}{4}>\frac{2}{4}=\frac{1}{2}, \quad \frac{1}{5}+\frac{1}{6}+\frac{1}{7}+\frac{1}{8}>\frac{4}{8}=\frac{1}{2}, \ldots$
In general, $\sum_{n=2^{k}+1}^{2^{k+1}} \frac{1}{n}>\frac{2^{k}}{2^{k+1}}=\frac{1}{2}$.
It follows that $\sum_{n=1}^{2^{k}} \frac{1}{n}>1+\frac{k}{2}$.
Thus the sequence of partial sums is unbounded.

Cauchy's Condensation Test

Theorem Suppose $\left\{a_{n}\right\}$ is a nonincreasing sequence of positive numbers. Then the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the "condensed" series $\sum_{k=1}^{\infty} 2^{k} a_{2^{k}}$ converges.

Proof: Since $\left\{a_{n}\right\}$ is a nonincreasing sequence, for any $i \in \mathbb{N}$ we have $2^{i} a_{2^{i+1}} \leq a_{2^{i}+1}+a_{2^{i}+2}+a_{2^{i}+3}+\cdots+a_{2^{i+1}} \leq 2^{i} a_{2^{i}}$. Summing this up over i from 1 to k, we obtain

$$
\sum_{i=1}^{k} 2^{i} a_{2^{i+1}} \leq \sum_{n=3}^{2^{k+1}} a_{n} \leq \sum_{i=1}^{k} 2^{i} a_{2^{i}} .
$$

Let $\left\{s_{n}\right\}$ be the partial sums of the original series and $\left\{t_{k}\right\}$ be the partial sums of the condensed one. The latter inequalities are equivalent to $\frac{1}{2}\left(t_{k+1}-t_{1}\right) \leq s_{2} k+1-s_{2} \leq t_{k}$. It follows that the sequence $\left\{t_{k}\right\}$ is bounded if and only if the sequence $\left\{s_{2 k}\right\}$ is bounded. Since the sequence $\left\{s_{n}\right\}$ is nondecreasing, it is bounded if and only if its subsequence $\left\{s_{2^{k}}\right\}$ is bounded.

Examples

- $\sum_{n=1}^{\infty} \frac{1}{n^{p}}=1+\frac{1}{2^{p}}+\frac{1}{3^{p}}+\cdots+\frac{1}{n^{p}}+\ldots, \quad p>0$.

Since $a_{n}=1 / n^{p}$, the condensed series is

$$
\sum_{k=1}^{\infty} 2^{k} a_{2^{k}}=\sum_{k=1}^{\infty} \frac{2^{k}}{\left(2^{k}\right)^{p}}=\sum_{k=1}^{\infty}\left(\frac{2}{2^{p}}\right)^{k} .
$$

This is a geometric series. It converges if $2 / 2^{p}<1$, i.e. $p>1$, and diverges if $2 / 2^{p} \geq 1$, i.e. $p \leq 1$.

- $\sum_{n=2}^{\infty} \frac{1}{n \log ^{p} n}, p>0$.

Since $a_{n}=\left(n \log ^{p} n\right)^{-1}$, the condensed series is
$\sum_{k=1}^{\infty} 2^{k} a_{2^{k}}=\sum_{k=1}^{\infty} \frac{2^{k}}{2^{k}\left(\log \left(2^{k}\right)\right)^{p}}=\sum_{k=1}^{\infty} \frac{1}{(k \log 2)^{p}}=\frac{1}{\log ^{p} 2} \sum_{k=1}^{\infty} \frac{1}{k^{p}}$.
By the above it converges if $p>1$ and diverges if $p \leq 1$.

d'Alembert's Ratio Test

Theorem Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Suppose that the limit

$$
r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}
$$

exists (finite or infinite).
(i) If $r<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $r>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Remark. In the case $r=1$, the Ratio Test is inconclusive. For example, consider a series $\sum_{n=1}^{\infty} n^{-p}$, where $p>0$. Then

$$
r=\lim _{n \rightarrow \infty} \frac{(n+1)^{-p}}{n^{-p}}=\lim _{n \rightarrow \infty}\left(1-\frac{1}{n+1}\right)^{p}=1
$$

for all $p>0$. However the series converges for $p>1$ and diverges for $0<p \leq 1$.

Theorem Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Suppose that the limit $r=\lim _{n \rightarrow \infty} a_{n+1} / a_{n}$ exists (finite or infinite).
(i) If $r<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $r>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: If $r>1$, then $a_{n+1} / a_{n}>1$ for n large enough. It follows that the sequence $\left\{a_{n}\right\}$ is eventually increasing.
Then $a_{n} \nrightarrow 0$ as $n \rightarrow \infty$ so that the series $\sum_{n=1}^{\infty} a_{n}$ diverges due to the Trivial Test.
In the case $r<1$, choose some $x \in(r, 1)$. Then
$a_{n+1} / a_{n}<x$ for n large enough. Consequently,
$a_{n+1} / x^{n+1}<a_{n} / x^{n}$ for n large enough. That is, the sequence $\left\{a_{n} / x^{n}\right\}$ is eventually decreasing. It follows that this sequence is bounded. Hence $a_{n} \leq C x^{n}$ for some $C>0$ and all $n \in \mathbb{N}$.
Since $0<r<x<1$, the geometric series $\sum_{n=1}^{\infty} x^{n}$ converges. So does the series $\sum_{n=1}^{\infty} C x^{n}$. By the Direct Comparison Test, the series $\sum_{n=1}^{\infty} a_{n}$ converges as well.

Cauchy's Root Test

Theorem Let $\left\{a_{n}\right\}$ be a sequence of positive numbers and

$$
r=\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}} .
$$

(i) If $r<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $r>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Proof: If $r>1$, then $\sup _{k \geq n} \sqrt[k]{a_{k}} \geq r>1$ for all $n \in \mathbb{N}$. Therefore for any $n \in \mathbb{N}$ there exists $k(n) \geq n$ such that $a_{k(n)}^{1 / k(n)}>1$. In particular, $a_{k(n)}>1$. It follows that $a_{k} \ngtr 0$ as $k \rightarrow \infty$ so that the series $\sum_{k=1}^{\infty} a_{k}$ diverges due to the Trivial Test.
In the case $r<1$, choose some $x \in(r, 1)$. Then $\sup _{k \geq n} \sqrt[k]{a_{k}}<x$ for some $n \in \mathbb{N}$. This implies that $a_{k}<x^{k}$ for all $k \geq n$. Since $0<r<x<1$, the geometric series $\sum_{k=1}^{\infty} x^{k}$ converges. By the Direct Comparison Test, the series $\sum_{k=1}^{\infty} a_{k}$ converges as well.

Examples

- $\sum_{n=1}^{\infty} \frac{n}{2^{n}}=\frac{1}{2}+\frac{2}{4}+\frac{3}{8}+\frac{4}{16}+\frac{5}{32}+\ldots$

If $a_{n}=n / 2^{n}$, then

$$
\frac{a_{n+1}}{a_{n}}=\frac{n+1}{2^{n+1}}\left(\frac{n}{2^{n}}\right)^{-1}=\frac{n+1}{2 n}=\frac{1}{2}+\frac{1}{2 n} \rightarrow \frac{1}{2}
$$

as $n \rightarrow \infty$. By the Ratio Test, the series converges.

- $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots, x>0$.

Let $a_{n}=x^{n} / n!, n \in \mathbb{N}$. Then

$$
\frac{a_{n+1}}{a_{n}}=\frac{x^{n+1}}{(n+1)!}\left(\frac{x^{n}}{n!}\right)^{-1}=\frac{x}{n+1} \rightarrow 0 \text { as } n \rightarrow \infty .
$$

By the Ratio Test, the series converges for all $x>0$.

Examples

- $\sum_{n=1}^{\infty} \frac{(n!)^{2}}{(2 n)!}=\frac{(1!)^{2}}{2!}+\frac{(2!)^{2}}{4!}+\frac{(3!)^{2}}{6!}+\ldots$

If $a_{n}=(n!)^{2} /(2 n)!$, then

$$
\frac{a_{n+1}}{a_{n}}=\frac{(n+1)^{2}}{(2 n+1)(2 n+2)}=\frac{n+1}{2(2 n+1)}=\frac{1+n^{-1}}{4+2 n^{-1}} \rightarrow \frac{1}{4}
$$

as $n \rightarrow \infty$. By the Ratio Test, the series converges.

- $\sum_{n=1}^{\infty}\left(\frac{n}{n+1}\right)^{n^{2}}=\frac{1}{2}+\left(\frac{2}{3}\right)^{4}+\left(\frac{3}{4}\right)^{9}+\ldots$

If $a_{n}=(n /(n+1))^{n^{2}}$, then

$$
\sqrt[n]{a_{n}}=\left(\frac{n}{n+1}\right)^{n}=\left(\frac{n+1}{n}\right)^{-n}=\left(1+\frac{1}{n}\right)^{-n} \rightarrow \frac{1}{e}
$$

as $n \rightarrow \infty$. By the Root Test, the series converges.

