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Lecture 15:
Tests for convergence.



Convergence of infinite series

[Cauchy Criterion] An infinite series Y~ a, converges
if and only if for every ¢ > 0 there exists N € N such that
m>n> N implies |a,+ api1+ -+ am| <e.

[Trivial Test] If the terms of an infinite series do not
converge to zero, then the series diverges.

[Series with nonnegative terms] A series ) . a, with
nonnegative terms converges if and only if the sequence of
partial sums s, = a; +a, + -+ a, is bounded above.

[Direct Comparison Test] Suppose that a,, b, > 0 for all
n €N and a, < b, for large n. Then convergence of the
serigs P b,,. implies convergence of > a, while

Y reqan =00 implies Y ", b, = c0.



Harmonic series
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Thus the sequence of partial sums is unbounded.



Cauchy’s Condensation Test

Theorem Suppose {a,} is a nonincreasing sequence of
o

positive numbers. Then the series Z . a, converges if
n—

o
and only if the “condensed” series E ) 12k32k converges.

Proof: Since {a,} is a nonincreasing sequence, for any i € N
we have 2'apii1 < apiyg + apigo + apipz + - 4 ain < 2'ayi.
Summing this up over i/ from 1 to k, we obtain

k 2k+1

Zi:l 2i32i+1 < Zn:3 an < Zf:l 2i32i.

Let {s,} be the partial sums of the original series and {t;} be
the partial sums of the condensed one. The latter inequalities
are equivalent to %(tkﬂ —t1) < spki1 — 5 < ty. It follows
that the sequence {t,} is bounded if and only if the sequence
{so«} is bounded. Since the sequence {s,} is nondecreasing,
it is bounded if and only if its subsequence {s,} is bounded.



Examples

Since a, = 1/nP, the condensed series is
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This is a geometric series. It converges if 2/2P < 1, i.e
p > 1, and diverges if 2/2°P >1, ie. p<1.
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Since a, = (nlogP n)™!, the condensed series is
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By the above it converges if p > 1 and diverges if p < 1.




d’Alembert’s Ratio Test

Theorem Let {a,} be a sequence of positive numbers.
Suppose that the limit
. an—i—l
r= lim

n—o00 an

exists (finite or infinite).
(i) If r <1, then the series ) > a, converges.
(ii) If r > 1, then the series > ° a, diverges.

Remark. In the case r = 1, the Ratio Test is inconclusive.
For example, consider a series 220:1 n—P, where p > 0.
Then . . ,
-p

petim D (- 22} 2
n—o0 n—P n—o0 n -+ 1
for all p > 0. However the series converges for p > 1 and
diverges for 0 < p < 1.



Theorem Let {a,} be a sequence of positive numbers.
Suppose that the limit r = nIer;O an+1/an exists (finite or
infinite).

(i) If r <1, then the series Y ° a, converges.

(ii) If r > 1, then the series > ° a, diverges.

Proof: If r > 1, then a,.1/a, > 1 for n large enough.
It follows that the sequence {a,} is eventually increasing.
Then a, /0 as n — oo so that the series Y  a,
diverges due to the Trivial Test.

In the case r < 1, choose some x € (r,1). Then

any1/a, < x for nlarge enough. Consequently,

ani1/x™t < a,/x" for nlarge enough. That is, the sequence
{an/x"} is eventually decreasing. It follows that this sequence
is bounded. Hence a, < Cx" for some C >0 and all n € N.
Since 0 < r < x < 1, the geometric series Ziil x"
converges. So does the series ) °  Cx". By the Direct
Comparison Test, the series 220:1 a, converges as well.



Cauchy’s Root Test

Theorem Let {a,} be a sequence of positive numbers and

r = limsup y/a,.

n—oo
(i) If r <1, then the series ) > a, converges.
(ii) If r > 1, then the series > 7 a, diverges.

Proof: If r > 1, then sup,-,/ax > r>1 forall neN.
Therefore for any n € N there exists k(n) > n such that

ai{:)(") > 1. In particular, ax,) > 1. It follows that a, /4 0
as k — oo so that the series > ",7 a, diverges due to the

Trivial Test.

In the case r < 1, choose some x € (r,1). Then

SUPxs, +/ak < x for some n € N. This implies that a, < x*
for all k > n. Since 0 < r < x < 1, the geometric series

S o7 x* converges. By the Direct Comparison Test, the
series > .-, ax converges as well.



Examples
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If a,=n/2", then
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as n — oco. By the Ratio Test, the series converges.
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Let a, = x"/n!, n€ N. Then
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By the Ratio Test, the series converges for all x > 0.
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If a, = (n!)%/(2n)!, then
ans1  (n+1?  n+41 1+n! _)%

a,  (n+1)(2n+2) 202n+1) 4+2nt

as n — oco. By the Ratio Test, the series converges.
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If a,=(n/(n+1))", then
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as n — oco. By the Root Test, the series converges.




