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Advanced Calculus I

Lecture 15:
Tests for convergence.



Convergence of infinite series

[Cauchy Criterion] An infinite series
∑∞

n=1 an converges
if and only if for every ε > 0 there exists N ∈ N such that
m ≥ n ≥ N implies |an + an+1 + · · ·+ am| < ε.

[Trivial Test] If the terms of an infinite series do not
converge to zero, then the series diverges.

[Series with nonnegative terms] A series
∑∞

n=1 an with
nonnegative terms converges if and only if the sequence of
partial sums sn = a1 + a2 + · · ·+ an is bounded above.

[Direct Comparison Test] Suppose that an, bn ≥ 0 for all
n ∈ N and an ≤ bn for large n. Then convergence of the
series

∑∞

n=1 bn implies convergence of
∑∞

n=1 an while
∑∞

n=1 an = ∞ implies
∑∞

n=1 bn = ∞.



Harmonic series
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In general,
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It follows that
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2
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Thus the sequence of partial sums is unbounded.



Cauchy’s Condensation Test

Theorem Suppose {an} is a nonincreasing sequence of

positive numbers. Then the series
∑∞

n=1
an converges if

and only if the “condensed” series
∑∞

k=1
2ka2k converges.

Proof: Since {an} is a nonincreasing sequence, for any i ∈ N

we have 2ia2i+1 ≤ a2i+1 + a2i+2 + a2i+3 + · · ·+ a2i+1 ≤ 2ia2i .
Summing this up over i from 1 to k, we obtain

∑k

i=1
2ia2i+1 ≤

∑2k+1

n=3
an ≤

∑k

i=1
2ia2i .

Let {sn} be the partial sums of the original series and {tk} be
the partial sums of the condensed one. The latter inequalities
are equivalent to 1

2
(tk+1 − t1) ≤ s2k+1 − s2 ≤ tk . It follows

that the sequence {tk} is bounded if and only if the sequence
{s2k} is bounded. Since the sequence {sn} is nondecreasing,
it is bounded if and only if its subsequence {s2k} is bounded.



Examples

•
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1
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Since an = 1/np, the condensed series is
∞
∑

k=1

2ka2k =
∞
∑

k=1

2k

(2k)p
=

∞
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.

This is a geometric series. It converges if 2/2p < 1, i.e.
p > 1, and diverges if 2/2p ≥ 1, i.e. p ≤ 1.

•
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1

n logpn
, p > 0.

Since an = (n logp n)−1, the condensed series is
∞
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∞
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=

∞
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By the above it converges if p > 1 and diverges if p ≤ 1.



d’Alembert’s Ratio Test

Theorem Let {an} be a sequence of positive numbers.
Suppose that the limit

r = lim
n→∞

an+1

an
exists (finite or infinite).

(i) If r < 1, then the series
∑∞

n=1 an converges.

(ii) If r > 1, then the series
∑∞

n=1 an diverges.

Remark. In the case r = 1, the Ratio Test is inconclusive.
For example, consider a series

∑∞

n=1 n
−p, where p > 0.

Then

r = lim
n→∞

(n + 1)−p

n−p
= lim

n→∞

(

1− 1

n + 1

)p

= 1

for all p > 0. However the series converges for p > 1 and
diverges for 0 < p ≤ 1.



Theorem Let {an} be a sequence of positive numbers.
Suppose that the limit r = lim

n→∞
an+1/an exists (finite or

infinite).

(i) If r < 1, then the series
∑∞

n=1 an converges.

(ii) If r > 1, then the series
∑∞

n=1 an diverges.

Proof: If r > 1, then an+1/an > 1 for n large enough.
It follows that the sequence {an} is eventually increasing.
Then an 6→ 0 as n → ∞ so that the series

∑∞

n=1 an
diverges due to the Trivial Test.

In the case r < 1, choose some x ∈ (r , 1). Then
an+1/an < x for n large enough. Consequently,
an+1/x

n+1 < an/x
n for n large enough. That is, the sequence

{an/xn} is eventually decreasing. It follows that this sequence
is bounded. Hence an ≤ Cxn for some C > 0 and all n ∈ N.
Since 0 < r < x < 1, the geometric series

∑∞

n=1 x
n

converges. So does the series
∑∞

n=1 Cx
n. By the Direct

Comparison Test, the series
∑∞

n=1 an converges as well.



Cauchy’s Root Test

Theorem Let {an} be a sequence of positive numbers and

r = lim sup
n→∞

n
√
an.

(i) If r < 1, then the series
∑∞

n=1 an converges.

(ii) If r > 1, then the series
∑∞

n=1 an diverges.

Proof: If r > 1, then supk≥n
k
√
ak ≥ r > 1 for all n ∈ N.

Therefore for any n ∈ N there exists k(n) ≥ n such that

a
1/k(n)
k(n) > 1. In particular, ak(n) > 1. It follows that ak 6→ 0

as k → ∞ so that the series
∑∞

k=1 ak diverges due to the
Trivial Test.

In the case r < 1, choose some x ∈ (r , 1). Then
supk≥n

k
√
ak < x for some n ∈ N. This implies that ak < xk

for all k ≥ n. Since 0 < r < x < 1, the geometric series
∑∞

k=1 x
k converges. By the Direct Comparison Test, the

series
∑∞

k=1 ak converges as well.



Examples
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If an = n/2n, then
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as n → ∞. By the Ratio Test, the series converges.
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Let an = xn/n!, n ∈ N. Then

an+1
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=

xn+1

(n + 1)!

(

xn

n!

)−1

=
x

n + 1
→ 0 as n → ∞.

By the Ratio Test, the series converges for all x > 0.
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If an = (n!)2/(2n)!, then
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as n → ∞. By the Ratio Test, the series converges.
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2
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n
√
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=
(n + 1

n
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1
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→ 1

e

as n → ∞. By the Root Test, the series converges.


