
MATH 409

Advanced Calculus I

Lecture 16:
Tests for convergence (continued).

Alternating series.



Tests for convergence

[Condensation Test] Suppose {an} is a nonincreasing
sequence of positive numbers. Then the series

∑

∞

n=1
an

converges if and only if the “condensed” series
∑

∞

k=1
2ka2k

converges.

[Ratio Test] Let {an} be a sequence of positive numbers.
Suppose that the limit r = lim

n→∞

an+1/an exists (finite or

infinite). (i) If r < 1, then the series
∑

∞

n=1
an converges.

(ii) If r > 1, then the series
∑

∞

n=1
an diverges.

[Root Test] Let {an} be a sequence of positive numbers and

r = lim sup
n→∞

n
√
an.

(i) If r < 1, then the series
∑

∞

n=1
an converges.

(ii) If r > 1, then the series
∑

∞

n=1
an diverges.



Refined ratio tests

[Raabe’s Test] Let {an} be a sequence of positive numbers.

Suppose that the limit L = lim
n→∞

n

(

an

an+1

− 1

)

exists (finite

or infinite). Then the series
∑

∞

n=1
an converges if L > 1,

and diverges if L < 1.

Remark. If −∞ < L < ∞ then an+1/an → 1 as n → ∞.

[Gauss’s Test] Let {an} be a sequence of positive numbers.

Suppose that
an

an+1

= 1 +
L

n
+

γn
n1+ε

, where L is a constant,

ε > 0, and {γn} is a bounded sequence. Then the series
∑

∞

n=1
an converges if L > 1, and diverges if L ≤ 1.

Remark. Under the assumptions of the Gauss Test,
n(an/an+1 − 1) → L as n → ∞.



Example

•
∑∞

n=1

1

np
converges for p > 1 and diverges for 0 < p ≤ 1.

The usual Ratio Test is inconclusive. Indeed, an = n−p and

r = lim
n→∞

an+1

an
= lim

n→∞

(n + 1)−p

n−p
= lim

n→∞

(

1 +
1

n

)

−p

= 1

for all p > 0. On the other hand,

n

(

an

an+1

− 1

)

= n
(

(1 + 1/n)p − 1
)

=
(1 + 1/n)p − 1

1/n
,

which converges to p as n → ∞, the derivative of the
function f (x) = xp at x = 1. Hence the Raabe Test is
conclusive for p 6= 1. Further,

an

an+1

=

(

1 +
1

n

)p

= 1 +
p

n
+

γn
n2

,

where {γn} is bounded. Hence the Gauss Test is conclusive
for all p > 0.



Integral test

Theorem Suppose that a function f : [1,∞) → R is
positive and nonincreasing on [1,∞). Then
(i) a sequence {yn} is bounded and nonincreasing, where

yn = f (1) + f (2) + · · ·+ f (n)−
∫ n

1

f (x) dx , n = 1, 2, . . .

(ii) the series
∑

∞

n=1
f (n) is convergent if and only if the

function f is improperly integrable on [1,∞).

Remark. Suppose F (x) =

∫

f (x) dx is the antiderivative.

Then the improper integral

∫

∞

1

f (x) dx converges if and only

if F (x) converges to a finite limit as x → +∞.

Idea of the proof: f (n + 1) ≤
∫ n+1

n

f (x) dx ≤ f (n).



Examples

• The harmonic series
∑∞

n=1

1

n
diverges.

Indeed,
∫ n

1
x−1 dx = log n → +∞ as n → ∞. By the

Integral Test, the series is divergent. Moreover, the sequence
yn =

∑n

k=1
k−1 − log n is bounded and decreasing (and hence

convergent).

•
∑∞

n=2

1

n log2n
converges.

The antiderivative of f (x) = (x log2 x)−1 on (1,∞) is
∫

dx

x log2x
=

∫

d(log x)

log2x
= − 1

log x
+ C .

Since the antiderivative converges to a finite limit at +∞, the
function f is improperly integrable on [2,∞). By the Integral
Test, the series converges.



Alternating Series Test

Definition. An infinite series
∑∞

n=1
an is called

alternating if any two neighboring terms have

different signs: anan+1 < 0 for all n ∈ N.

Theorem (Leibniz Criterion) If {an} is a
nonincreasing sequence of positive numbers and
an → 0 as n → ∞, then the alternating series

∞
∑

n=1

(−1)n+1an = a1 − a2 + a3 − a4 + . . .

converges.



Theorem (Leibniz Criterion) If {an} is a nonincreasing
sequence of positive numbers and an → 0 as n → ∞, then
the alternating series

∑

∞

n=1
(−1)n+1an = a1−a2+a3−a4+ . . .

converges.

Proof: Let sn =
∑n

k=1
(−1)k+1ak be the partial sum of order

n of the series. For any n ∈ N we have

s2n = s2n−1 − a2n < s2n−1.

Since the sequence {an} is nonincreasing, we also have

s2n+1 = s2n−1 − a2n + a2n+1 ≤ s2n−1,

s2n+2 = s2n + a2n+1 − a2n+2 ≥ s2n.

Hence s2n ≤ s2n+2 < s2n+1 ≤ s2n−1 for all n ∈ N. It follows
that a subsequence {s2n} is nondecreasing, a subsequence
{s2n−1} is nonincreasing, and both are bounded. Hence both
subsequences are convergent. Since s2n−1 − s2n = a2n → 0 as
n → ∞, both subsequences converge to the same limit L.
Then L is the limit of the entire sequence {sn}.



Examples

•
∑∞

n=1

(−1)n+1

n
= 1− 1

2
+

1

3
− 1

4
+ . . .

The series converges due to the Alternating Series Test. One
can show that the sum is log 2.

•
∑∞

n=1

(−1)n

2n − 1
= −1 +

1

3
− 1

5
+

1

7
− . . .

After multiplying all terms by −1, the series satisfy all
conditions of the Alternating Series Test. It follows that the
series converges. One can show that the sum is −π/4.

•
∑∞

n=1

(−1)n+1 n

2n − 1
= 1− 2

3
+

3

5
− 4

7
+ . . .

The series is alternating and the terms decrease in absolute
value. However the absolute values of terms converge to 1/2
instead of 0. Hence the series diverges.


