MATH 409 Advanced Calculus I Lecture 16: Tests for convergence (continued). Alternating series.

Tests for convergence

[Condensation Test] Suppose $\{a_n\}$ is a nonincreasing sequence of positive numbers. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the "condensed" series $\sum_{k=1}^{\infty} 2^k a_{2^k}$ converges.

[Ratio Test] Let $\{a_n\}$ be a sequence of positive numbers. Suppose that the limit $r = \lim_{n \to \infty} a_{n+1}/a_n$ exists (finite or infinite). (i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ converges. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

[Root Test] Let $\{a_n\}$ be a sequence of positive numbers and $r = \limsup_{n \to \infty} \sqrt[n]{a_n}$.

(i) If r < 1, then the series $\sum_{n=1}^{\infty} a_n$ converges. (ii) If r > 1, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Refined ratio tests

[Raabe's Test] Let $\{a_n\}$ be a sequence of positive numbers. Suppose that the limit $L = \lim_{n \to \infty} n\left(\frac{a_n}{a_{n+1}} - 1\right)$ exists (finite or infinite). Then the series $\sum_{n=1}^{\infty} a_n$ converges if L > 1, and diverges if L < 1.

Remark. If $-\infty < L < \infty$ then $a_{n+1}/a_n \to 1$ as $n \to \infty$.

[Gauss's Test] Let $\{a_n\}$ be a sequence of positive numbers. Suppose that $\frac{a_n}{a_{n+1}} = 1 + \frac{L}{n} + \frac{\gamma_n}{n^{1+\varepsilon}}$, where *L* is a constant, $\varepsilon > 0$, and $\{\gamma_n\}$ is a bounded sequence. Then the series $\sum_{n=1}^{\infty} a_n$ converges if L > 1, and diverges if $L \le 1$.

Remark. Under the assumptions of the Gauss Test, $n(a_n/a_{n+1}-1) \rightarrow L$ as $n \rightarrow \infty$.

Example

•
$$\sum_{n=1}^{\infty} \frac{1}{n^p}$$
 converges for $p > 1$ and diverges for $0 .$

The usual Ratio Test is inconclusive. Indeed, $a_n = n^{-p}$ and

$$r = \lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \lim_{n \to \infty} \frac{(n+1)^{-p}}{n^{-p}} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^{-p} = 1$$

for all p > 0. On the other hand,

$$n\left(\frac{a_n}{a_{n+1}}-1\right) = n\left((1+1/n)^p-1\right) = \frac{(1+1/n)^p-1}{1/n},$$

which converges to p as $n \to \infty$, the derivative of the function $f(x) = x^p$ at x = 1. Hence the Raabe Test is conclusive for $p \neq 1$. Further,

$$\frac{a_n}{a_{n+1}} = \left(1+\frac{1}{n}\right)^p = 1+\frac{p}{n}+\frac{\gamma_n}{n^2},$$

where $\{\gamma_n\}$ is bounded. Hence the Gauss Test is conclusive for all p > 0.

Integral test

Theorem Suppose that a function $f : [1, \infty) \to \mathbb{R}$ is positive and nonincreasing on $[1, \infty)$. Then (i) a sequence $\{y_n\}$ is bounded and nonincreasing, where

$$y_n = f(1) + f(2) + \cdots + f(n) - \int_1^n f(x) dx, \quad n = 1, 2, \ldots$$

(ii) the series $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the function f is improperly integrable on $[1, \infty)$.

Remark. Suppose $F(x) = \int f(x) dx$ is the antiderivative. Then the improper integral $\int_{1}^{\infty} f(x) dx$ converges if and only if F(x) converges to a finite limit as $x \to +\infty$.

Idea of the proof:
$$f(n+1) \leq \int_n^{n+1} f(x) dx \leq f(n)$$
.

Examples

• The harmonic series
$$\sum_{n=1}^{\infty} \frac{1}{n}$$
 diverges.

Indeed, $\int_{1}^{n} x^{-1} dx = \log n \to +\infty$ as $n \to \infty$. By the Integral Test, the series is divergent. Moreover, the sequence $y_n = \sum_{k=1}^{n} k^{-1} - \log n$ is bounded and decreasing (and hence convergent).

•
$$\sum_{n=2}^{\infty} \frac{1}{n \log^2 n}$$
 converges.

The antiderivative of $f(x) = (x \log^2 x)^{-1}$ on $(1, \infty)$ is

$$\int \frac{dx}{x \log^2 x} = \int \frac{d(\log x)}{\log^2 x} = -\frac{1}{\log x} + C.$$

Since the antiderivative converges to a finite limit at $+\infty$, the function f is improperly integrable on $[2,\infty)$. By the Integral Test, the series converges.

Alternating Series Test

Definition. An infinite series $\sum_{n=1}^{\infty} a_n$ is called **alternating** if any two neighboring terms have different signs: $a_n a_{n+1} < 0$ for all $n \in \mathbb{N}$.

Theorem (Leibniz Criterion) If $\{a_n\}$ is a nonincreasing sequence of positive numbers and $a_n \to 0$ as $n \to \infty$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$

converges.

Theorem (Leibniz Criterion) If $\{a_n\}$ is a nonincreasing sequence of positive numbers and $a_n \to 0$ as $n \to \infty$, then the alternating series $\sum_{n=1}^{\infty} (-1)^{n+1} a_n = a_1 - a_2 + a_3 - a_4 + \dots$ converges.

Proof: Let $s_n = \sum_{k=1}^n (-1)^{k+1} a_k$ be the partial sum of order n of the series. For any $n \in \mathbb{N}$ we have

$$s_{2n} = s_{2n-1} - a_{2n} < s_{2n-1}$$
.

Since the sequence $\{a_n\}$ is nonincreasing, we also have

$$s_{2n+1} = s_{2n-1} - a_{2n} + a_{2n+1} \le s_{2n-1},$$

$$s_{2n+2} = s_{2n} + a_{2n+1} - a_{2n+2} \ge s_{2n}.$$

Hence $s_{2n} \leq s_{2n+2} < s_{2n+1} \leq s_{2n-1}$ for all $n \in \mathbb{N}$. It follows that a subsequence $\{s_{2n}\}$ is nondecreasing, a subsequence $\{s_{2n-1}\}$ is nonincreasing, and both are bounded. Hence both subsequences are convergent. Since $s_{2n-1} - s_{2n} = a_{2n} \to 0$ as $n \to \infty$, both subsequences converge to the same limit *L*. Then *L* is the limit of the entire sequence $\{s_n\}$.

Examples

•
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

The series converges due to the Alternating Series Test. One can show that the sum is log 2.

•
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2n-1} = -1 + \frac{1}{3} - \frac{1}{5} + \frac{1}{7} - \dots$$

After multiplying all terms by -1, the series satisfy all conditions of the Alternating Series Test. It follows that the series converges. One can show that the sum is $-\pi/4$.

•
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2n-1} = 1 - \frac{2}{3} + \frac{3}{5} - \frac{4}{7} + \dots$$

The series is alternating and the terms decrease in absolute value. However the absolute values of terms converge to 1/2 instead of 0. Hence the series diverges.