MATH 409
 Advanced Calculus I

Lecture 16:
 Tests for convergence (continued). Alternating series.

Tests for convergence

[Condensation Test] Suppose $\left\{a_{n}\right\}$ is a nonincreasing sequence of positive numbers. Then the series $\sum_{n=1}^{\infty} a_{n}$ converges if and only if the "condensed" series $\sum_{k=1}^{\infty} 2^{k} a_{2^{k}}$ converges.
[Ratio Test] Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Suppose that the limit $r=\lim _{n \rightarrow \infty} a_{n+1} / a_{n}$ exists (finite or infinite). (i) If $r<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $r>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.
[Root Test] Let $\left\{a_{n}\right\}$ be a sequence of positive numbers and

$$
r=\limsup _{n \rightarrow \infty} \sqrt[n]{a_{n}}
$$

(i) If $r<1$, then the series $\sum_{n=1}^{\infty} a_{n}$ converges.
(ii) If $r>1$, then the series $\sum_{n=1}^{\infty} a_{n}$ diverges.

Refined ratio tests

[Raabe's Test] Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Suppose that the limit $L=\lim _{n \rightarrow \infty} n\left(\frac{a_{n}}{a_{n+1}}-1\right)$ exists (finite or infinite). Then the series $\sum_{n=1}^{\infty} a_{n}$ converges if $L>1$, and diverges if $L<1$.
Remark. If $-\infty<L<\infty$ then $a_{n+1} / a_{n} \rightarrow 1$ as $n \rightarrow \infty$.
[Gauss's Test] Let $\left\{a_{n}\right\}$ be a sequence of positive numbers. Suppose that $\frac{a_{n}}{a_{n+1}}=1+\frac{L}{n}+\frac{\gamma_{n}}{n^{1+\varepsilon}}$, where L is a constant, $\varepsilon>0$, and $\left\{\gamma_{n}\right\}$ is a bounded sequence. Then the series $\sum_{n=1}^{\infty} a_{n}$ converges if $L>1$, and diverges if $L \leq 1$.

Remark. Under the assumptions of the Gauss Test, $n\left(a_{n} / a_{n+1}-1\right) \rightarrow L$ as $n \rightarrow \infty$.

Example

- $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges for $p>1$ and diverges for $0<p \leq 1$.

The usual Ratio Test is inconclusive. Indeed, $a_{n}=n^{-p}$ and

$$
r=\lim _{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{-p}}{n^{-p}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{-p}=1
$$

for all $p>0$. On the other hand,

$$
n\left(\frac{a_{n}}{a_{n+1}}-1\right)=n\left((1+1 / n)^{p}-1\right)=\frac{(1+1 / n)^{p}-1}{1 / n},
$$

which converges to p as $n \rightarrow \infty$, the derivative of the function $f(x)=x^{p}$ at $x=1$. Hence the Raabe Test is conclusive for $p \neq 1$. Further,

$$
\frac{a_{n}}{a_{n+1}}=\left(1+\frac{1}{n}\right)^{p}=1+\frac{p}{n}+\frac{\gamma_{n}}{n^{2}},
$$

where $\left\{\gamma_{n}\right\}$ is bounded. Hence the Gauss Test is conclusive for all $p>0$.

Integral test

Theorem Suppose that a function $f:[1, \infty) \rightarrow \mathbb{R}$ is positive and nonincreasing on $[1, \infty)$. Then
(i) a sequence $\left\{y_{n}\right\}$ is bounded and nonincreasing, where

$$
y_{n}=f(1)+f(2)+\cdots+f(n)-\int_{1}^{n} f(x) d x, \quad n=1,2, \ldots
$$

(ii) the series $\sum_{n=1}^{\infty} f(n)$ is convergent if and only if the function f is improperly integrable on $[1, \infty)$.
Remark. Suppose $F(x)=\int f(x) d x$ is the antiderivative.
Then the improper integral $\int_{1}^{\infty} f(x) d x$ converges if and only if $F(x)$ converges to a finite limit as $x \rightarrow+\infty$.
Idea of the proof: $\quad f(n+1) \leq \int_{n}^{n+1} f(x) d x \leq f(n)$.

Examples

- The harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges.

Indeed, $\int_{1}^{n} x^{-1} d x=\log n \rightarrow+\infty$ as $n \rightarrow \infty$. By the Integral Test, the series is divergent. Moreover, the sequence $y_{n}=\sum_{k=1}^{n} k^{-1}-\log n$ is bounded and decreasing (and hence convergent).

- $\sum_{n=2}^{\infty} \frac{1}{n \log ^{2} n}$ converges.

The antiderivative of $f(x)=\left(x \log ^{2} x\right)^{-1}$ on $(1, \infty)$ is

$$
\int \frac{d x}{x \log ^{2} x}=\int \frac{d(\log x)}{\log ^{2} x}=-\frac{1}{\log x}+C .
$$

Since the antiderivative converges to a finite limit at $+\infty$, the function f is improperly integrable on $[2, \infty)$. By the Integral Test, the series converges.

Alternating Series Test

Definition. An infinite series $\sum_{n=1}^{\infty} a_{n}$ is called alternating if any two neighboring terms have different signs: $a_{n} a_{n+1}<0$ for all $n \in \mathbb{N}$.

Theorem (Leibniz Criterion) If $\left\{a_{n}\right\}$ is a nonincreasing sequence of positive numbers and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the alternating series

$$
\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots
$$

converges.

Theorem (Leibniz Criterion) If $\left\{a_{n}\right\}$ is a nonincreasing sequence of positive numbers and $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, then the alternating series $\sum_{n=1}^{\infty}(-1)^{n+1} a_{n}=a_{1}-a_{2}+a_{3}-a_{4}+\ldots$ converges.

Proof: Let $s_{n}=\sum_{k=1}^{n}(-1)^{k+1} a_{k}$ be the partial sum of order n of the series. For any $n \in \mathbb{N}$ we have

$$
s_{2 n}=s_{2 n-1}-a_{2 n}<s_{2 n-1}
$$

Since the sequence $\left\{a_{n}\right\}$ is nonincreasing, we also have

$$
\begin{gathered}
s_{2 n+1}=s_{2 n-1}-a_{2 n}+a_{2 n+1} \leq s_{2 n-1} \\
s_{2 n+2}=s_{2 n}+a_{2 n+1}-a_{2 n+2} \geq s_{2 n}
\end{gathered}
$$

Hence $s_{2 n} \leq s_{2 n+2}<s_{2 n+1} \leq s_{2 n-1}$ for all $n \in \mathbb{N}$. It follows that a subsequence $\left\{s_{2 n}\right\}$ is nondecreasing, a subsequence $\left\{s_{2 n-1}\right\}$ is nonincreasing, and both are bounded. Hence both subsequences are convergent. Since $s_{2 n-1}-s_{2 n}=a_{2 n} \rightarrow 0$ as $n \rightarrow \infty$, both subsequences converge to the same limit L. Then L is the limit of the entire sequence $\left\{s_{n}\right\}$.

Examples

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$

The series converges due to the Alternating Series Test. One can show that the sum is $\log 2$.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{2 n-1}=-1+\frac{1}{3}-\frac{1}{5}+\frac{1}{7}-\ldots
$$

After multiplying all terms by -1 , the series satisfy all conditions of the Alternating Series Test. It follows that the series converges. One can show that the sum is $-\pi / 4$.

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2 n-1}=1-\frac{2}{3}+\frac{3}{5}-\frac{4}{7}+\ldots$

The series is alternating and the terms decrease in absolute value. However the absolute values of terms converge to $1 / 2$ instead of 0 . Hence the series diverges.

