MATH 409
 Advanced Calculus I

Lecture 17:
 Summation by parts.

Absolute convergence of series.

More tests for convergence

[Dirichlet's Test] Suppose $\sum_{n=1}^{\infty} a_{n}$ is a series with bounded partial sums and $\left\{b_{n}\right\}$ is a monotonic sequence that converges to 0 . Then the series
$\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent.
[Abel's Test] Suppose $\sum_{n=1}^{\infty} a_{n}$ is a convergent series and $\left\{b_{n}\right\}$ is a bounded monotonic sequence. Then the series $\sum_{n=1}^{\infty} a_{n} b_{n}$ is convergent.

The proof of these tests utilizes a technique called summation by parts.

Proof: We are going to use the Cauchy Criterion. For any $n, m \in \mathbb{N}, n \leq m$, the sum $a_{n} b_{n}+a_{n+1} b_{n+1}+\cdots+a_{m} b_{m}$ is rewritten as

$$
\begin{aligned}
= & a_{n}\left(b_{n}-b_{n+1}\right)+\left(a_{n}+a_{n+1}\right)\left(b_{n+1}-b_{n+2}\right)+\ldots \\
& +\left(a_{n}+\cdots+a_{m-1}\right)\left(b_{m-1}-b_{m}\right)+\left(a_{n}+\cdots+a_{m}\right) b_{m} \\
= & \left(s_{n}-s_{n-1}\right)\left(b_{n}-b_{n+1}\right)+\left(s_{n+1}-s_{n-1}\right)\left(b_{n+1}-b_{n+2}\right)+\ldots \\
& +\left(s_{m-1}-s_{n-1}\right)\left(b_{m-1}-b_{m}\right)+\left(s_{m}-s_{n-1}\right) b_{m},
\end{aligned}
$$

where $\left\{s_{k}\right\}$ are partial sums of the series $\sum_{k=1}^{\infty} a_{k}$.
It follows that $\left|a_{n} b_{n}+\cdots+a_{m} b_{m}\right| \leq A_{n, m} B_{n, m}$, where
$A_{n, m}=\max _{n \leq i \leq m}\left|s_{i}-s_{n-1}\right|$ and
$B_{n, m}=\left|b_{n}-b_{n+1}\right|+\left|b_{n+1}-b_{n+2}\right|+\cdots+\left|b_{m-1}-b_{m}\right|+\left|b_{m}\right|$.
Since $\left\{b_{k}\right\}$ is monotonic, we have $B_{n, m}=\left|b_{n}-b_{m}\right|+\left|b_{m}\right|$.
Under the assumptions of the Dirichlet Test, $A_{n, m}$ is bounded while $B_{n, m}$ gets arbitrarily small as $n \rightarrow \infty$. Under the assumptions of the Abel Test, $B_{n, m}$ is bounded while $A_{n, m}$ gets arbitrarily small as $n \rightarrow \infty$. In either case, $A_{n, m} B_{n, m}$ gets arbitrarily small as $n \rightarrow \infty$.

Examples

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$

The series converges due to the Dirichlet Test since the series $1-1+1-1+\ldots$ has bounded partial sums.

- $\sum_{n=1}^{\infty} \frac{\sin n}{n}=\sin 1+\frac{\sin 2}{2}+\frac{\sin 3}{3}+\frac{\sin 4}{4}+\ldots$

One can show that the series $\sum_{n=1}^{\infty} \sin n$ has bounded partial sums. Hence the Dirichlet Test applies.

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}(n+1)^{n}}{n^{n+1}}=\frac{2^{1}}{1^{2}}-\frac{3^{2}}{2^{3}}+\frac{4^{3}}{3^{4}}-\ldots$

The series converges due to the Abel Test, with $a_{n}=(-1)^{n+1} / n$ and $b_{n}=(n+1)^{n} / n^{n}=(1+1 / n)^{n}$.

Absolute convergence

Definition. An infinite series $\sum_{n=1}^{\infty} a_{n}$ is said to converge absolutely if $\sum_{n=1}^{\infty}\left|a_{n}\right|<\infty$.

Theorem Any absolutely convergent series is convergent.
Proof: Suppose that a series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, i.e., the series $\sum_{n=1}^{\infty}\left|a_{n}\right|$ converges. By the Cauchy Criterion, for every $\varepsilon>0$ there exists $N \in \mathbb{N}$ such that

$$
\left|\left|a_{n}\right|+\left|a_{n+1}\right|+\cdots+\left|a_{m}\right|\right|<\varepsilon
$$

for $m \geq n \geq N$. Then

$$
\left|a_{n}+a_{n+1}+\cdots+a_{m}\right| \leq\left|a_{n}\right|+\left|a_{n+1}\right|+\cdots+\left|a_{m}\right|<\varepsilon
$$

for $m \geq n \geq N$. According to the Cauchy Criterion, the series $\sum_{n=1}^{\infty} a_{n}$ converges.

Examples

- $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=1+\frac{1}{2^{3}}+\frac{1}{3^{3}}+\frac{1}{4^{3}}+\ldots$

The series converges due to a number of tests. Since it has positive terms, it is absolutely convergent as well.

- $\sum_{n=1}^{\infty} \frac{\sin n}{n^{2}}=\sin 1+\frac{\sin 2}{4}+\frac{\sin 3}{9}+\frac{\sin 4}{16}+\ldots$

Since $\left|\sin (n) / n^{2}\right| \leq 1 / n^{2}$ and the series $\sum_{n=1}^{\infty} 1 / n^{2}$ converges, this series converges absolutely due to the Direct Comparison Test.

- $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots$

The series converges (due to the Alternating Series Test), but not absolutely as the series $\sum_{n=1}^{\infty} 1 / n$ diverges.

Rearrangements

Let $\sum_{n=1}^{\infty} a_{n}$ be a series and suppose $\sigma: \mathbb{N} \rightarrow \mathbb{N}$ is an invertible transformation. Then the series $\sum_{n=1}^{\infty} a_{\sigma(n)}$ is called a rearrangement of the series $\sum_{n=1}^{\infty} a_{n}$.

Theorem (Dirichlet) If the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely, then any rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ also converges absolutely and, moreover, to the same sum.
Idea of the proof: Any partial sum of $\sum_{n=1}^{\infty}\left|a_{\sigma(n)}\right|$ is bounded above by a partial sum of $\sum_{n=1}^{\infty}\left|a_{n}\right|$, and vice versa.

Theorem (Riemann) If the series $\sum_{n=1}^{\infty} a_{n}$ converges but not absolutely, then for any $\alpha \in \mathbb{R}$ there is a rearrangement $\sum_{n=1}^{\infty} a_{\sigma(n)}$ that converges to the sum α.
Idea of the proof: Let $\left\{a_{n_{k}}\right\}$ be the subsequence of all positive terms and $\left\{a_{m_{k}}\right\}$ be the subsequence of all the other terms. Then the series $\sum_{k=1}^{\infty} a_{n_{k}}$ and $\sum_{k=1}^{\infty} a_{m_{k}}$ both diverge.

