
MATH 409

Advanced Calculus I

Lecture 17:
Summation by parts.

Absolute convergence of series.



More tests for convergence

[Dirichlet’s Test] Suppose
∑∞

n=1
an is a series

with bounded partial sums and {bn} is a monotonic
sequence that converges to 0. Then the series
∑∞

n=1
anbn is convergent.

[Abel’s Test] Suppose
∑∞

n=1
an is a convergent

series and {bn} is a bounded monotonic sequence.
Then the series

∑∞
n=1

anbn is convergent.

The proof of these tests utilizes a technique called
summation by parts.



Proof: We are going to use the Cauchy Criterion. For any
n,m ∈ N, n ≤ m, the sum anbn + an+1bn+1 + · · ·+ ambm is
rewritten as

= an(bn − bn+1) + (an + an+1)(bn+1 − bn+2) + . . .
+ (an + · · ·+ am−1)(bm−1 − bm) + (an + · · ·+ am)bm

= (sn − sn−1)(bn − bn+1) + (sn+1 − sn−1)(bn+1 − bn+2) + . . .
+ (sm−1 − sn−1)(bm−1 − bm) + (sm − sn−1)bm,

where {sk} are partial sums of the series
∑∞

k=1 ak .

It follows that |anbn + · · ·+ ambm| ≤ An,mBn,m, where
An,m = maxn≤i≤m |si − sn−1| and
Bn,m = |bn − bn+1|+ |bn+1 − bn+2|+ · · ·+ |bm−1 − bm|+ |bm|.
Since {bk} is monotonic, we have Bn,m = |bn − bm|+ |bm|.

Under the assumptions of the Dirichlet Test, An,m is bounded
while Bn,m gets arbitrarily small as n → ∞. Under the
assumptions of the Abel Test, Bn,m is bounded while An,m gets
arbitrarily small as n → ∞. In either case, An,mBn,m gets
arbitrarily small as n → ∞.



Examples

•
∑∞

n=1

(−1)n+1

n
= 1−

1

2
+

1

3
−

1

4
+ . . .

The series converges due to the Dirichlet Test since the series
1− 1 + 1− 1 + . . . has bounded partial sums.

•
∑∞

n=1

sin n

n
= sin 1 +

sin 2

2
+

sin 3

3
+

sin 4

4
+ . . .

One can show that the series
∑∞

n=1 sin n has bounded partial
sums. Hence the Dirichlet Test applies.

•
∑∞

n=1

(−1)n+1(n + 1)n

nn+1
=

21

12
−

32

23
+

43

34
− . . .

The series converges due to the Abel Test, with
an = (−1)n+1/n and bn = (n + 1)n/nn = (1 + 1/n)n.



Absolute convergence

Definition. An infinite series
∑∞

n=1
an is said to

converge absolutely if
∑∞

n=1
|an| < ∞.

Theorem Any absolutely convergent series is

convergent.

Proof: Suppose that a series
∑∞

n=1 an converges absolutely,
i.e., the series

∑∞

n=1 |an| converges. By the Cauchy
Criterion, for every ε > 0 there exists N ∈ N such that

∣

∣|an|+ |an+1|+ · · ·+ |am|
∣

∣ < ε

for m ≥ n ≥ N. Then

|an + an+1 + · · ·+ am| ≤ |an|+ |an+1|+ · · ·+ |am| < ε

for m ≥ n ≥ N. According to the Cauchy Criterion, the
series

∑∞

n=1 an converges.



Examples

•
∑∞

n=1

1

n3
= 1 +

1

23
+

1

33
+

1

43
+ . . .

The series converges due to a number of tests. Since it has
positive terms, it is absolutely convergent as well.

•
∑∞

n=1

sin n

n2
= sin 1 +

sin 2

4
+

sin 3

9
+

sin 4

16
+ . . .

Since | sin(n)/n2| ≤ 1/n2 and the series
∑∞

n=1 1/n
2

converges, this series converges absolutely due to the Direct
Comparison Test.

•
∑∞

n=1

(−1)n+1

n
= 1−

1

2
+

1

3
−

1

4
+ . . .

The series converges (due to the Alternating Series Test), but
not absolutely as the series

∑∞

n=1 1/n diverges.



Rearrangements

Let
∑∞

n=1 an be a series and suppose σ : N → N is an
invertible transformation. Then the series

∑∞

n=1 aσ(n) is
called a rearrangement of the series

∑∞

n=1 an.

Theorem (Dirichlet) If the series
∑∞

n=1 an converges
absolutely, then any rearrangement

∑∞

n=1 aσ(n) also converges
absolutely and, moreover, to the same sum.

Idea of the proof: Any partial sum of
∑∞

n=1 |aσ(n)| is
bounded above by a partial sum of

∑∞

n=1 |an|, and vice versa.

Theorem (Riemann) If the series
∑∞

n=1 an converges but
not absolutely, then for any α ∈ R there is a rearrangement
∑∞

n=1 aσ(n) that converges to the sum α.

Idea of the proof: Let {ank} be the subsequence of all positive
terms and {amk

} be the subsequence of all the other terms.
Then the series

∑∞

k=1 ank and
∑∞

k=1 amk
both diverge.


