MATH 409
Advanced Calculus |

Lecture 18:
Review for Test 1.



Topics for Test 1

Part I: Axiomatic model of the real numbers

Axioms of an ordered field

Completeness axiom

Archimedean principle

Principle of mathematical induction

Countable and uncountable sets

Thomson/Bruckner/Bruckner: 1.1-1.10, 2.3



Topics for Test 1

Part Il: Sequences and infinite sums

e Limits of sequences

e Bolzano-Weierstrass theorem
e Cauchy sequences

e Convergence of series

e Tests for convergence

e Absolute convergence

Thomson/Bruckner/Bruckner: 2.1-2.2, 2.4-2.13,
3.1-3.2, 3.4-3.7



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R
that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E C R is bounded above,
then E has a supremum.



Theorems to know

Theorem (Archimedean Principle) For any real number
€ > 0 there exists a natural number n such that ne > 1.

Theorem (Principle of mathematical induction) Let P(n)
be an assertion depending on a natural variable n. Suppose
that

e P(1) holds,

e whenever P(k) holds, so does P(k + 1).
Then P(n) holds for all n € N.

Theorem If Ay, A, ... are finite or countable sets, then the
union A; UA>, U ... is also finite or countable. As a
consequence, the sets Z, Q, and N x N are countable.

Theorem The set R is uncountable.



Limit theorems for sequences

Theorem If |im x, = lim y,=a and
n—o00 n—o00

x, < w, <y, for all sufficiently large n, then

lim w, = a.

n—o00

Theorem If |im x,=a, lim y,=b, and
n—o0 n—00

x, <y, for all sufficiently large n, then a < b.

Theorem If |lim x,=a and |im y, = b,
n—o0 n—o0

then lim (x,+y,) =a+b, lim(x,—y,) =a—b,
n—o0 n—o00
and lim x,y, = ab. If, additionally, b # 0 and

n—o00

Yo # 0 for all n € N, then lim x,/y, = a/b.
n—o0



More theorems on sequences

Theorem Any monotonic sequence converges to a
limit if bounded, and diverges to +00 or —o0
otherwise.

Theorem (Bolzano-Weierstrass) Every bounded
sequence of real numbers has a convergent

subsequence.

Theorem Any Cauchy sequence is convergent.



Tests for convergence of series

e Trivial Test

e Cauchy Criterion

e Direct Comparison Test
e Ratio Test

e Root Test

e Condensation Test

e Integral Test

e Alternating Series Test
e Dirichlet's Test

e Abel's Test



Sample problems for Test 1

Problem 1. Prove the following version of the
Archimedean property: for any positive real
numbers x and y there exists a natural number n
such that nx > y.

Problem 2. Prove that for any n € N,
2 1 2
13+23+33+---+n3:”(”+).
Problem 3. Given a set X, let P(X) denote the
set of all subsets of X. Prove that P(X) is not of
the same cardinality as X.



Sample problems for Test 1

Problem 4. let x; =a> 0 and x,11 =2/,
for all n € N. Prove that the sequence {x,} is
convergent and find its limit.

Problem 5. Suppose {r,} is a sequence that
enumerates all rational numbers. Prove that every
real number is a limit point of this sequence.



Sample problems for Test 1

Problem 6. For each of the following series,
determine whether the series converges and whether
it converges absolutely:

() Z\/L—}_—}_j__ (ii) Z_;\/ﬁ_f‘j!”cosn’




Problem 1. Prove the following version of the Archimedean
property: for any positive real numbers x and y there exists a
natural number n such that nx > y.

Proof: Let E be the set of all natural numbers n such that
(n—1)x <y. We are going to show that the set E is
nonempty and bounded above (so that sup E exists due to
the Completeness Axiom). Observe that (1 —1)x =0 < y.
Hence 1 € E, in particular, E is not empty. Further, if
(n—1)x <y then n—1<yx ! and n<1+yx1
Therefore 1+ yx~1 is an upper bound for E.

Now we know that m = sup E is a well-defined real number.
Since sup E is the least upper bound for the set E and

m —1 < m, the number m— 1 is not an upper bound for E.
Hence there exists n € E such that n > m — 1. Then

n+ 1> m, which implies that n+ 1 ¢ E. At the same time,
n+1&€N since ne€ ECN. Therefore ((n+1) —1)x >y,
that is, nx > y.



Problem 2. Prove that for any n € N,

n?(n+1)>

—

Proof: The proof is by induction on n. First we consider the
case n= 1. In this case the formula reduces to 13 = Q,
which is a true equality. Now assume that the formula holds
for n = k, thatis,

13_‘_23_‘_33_‘_‘.‘_1_”3:

k?(k +1)°
13+23+---+k3:¥.
Adding (k + 1)* to both sides of this equality, we get
k?(k +1)°
13+23+---+k3+(k+1)3:%+(k+1)3

= (k12 (4 (k4 1)) = (k4 12 s (1P

which means that the formula holds for n = k 4+ 1 as well.
By induction, the formula holds for any natural number n.



Remark. We have proved that

13+23+33+...+n3:M
1 .
Also, it is known that
1
1+2—|—3+---+n:w.

It follows that
P+224+3 4+ +n=(1+2+3+ -+ n)?

for all n € N.



Problem 3. Given a set X, let P(X) denote the
set of all subsets of X. Prove that P(X) is not of
the same cardinality as X.

Proof: We have to prove that there is no bijective map of X
onto P(X). Let us consider an arbitrary map f : X — P(X).
The image f(x) of an element x € X under this map is a
subset of X. We define a set

E={xeX|x¢f(x)}

By definition of the set E, any element x € X belongs to E if
and only if it does not belong to f(x). As a consequence,

E # f(x) for all x € X. Hence the map f is not onto. In
particular, it is not bijective.



Problem 4. Let x; =a >0 and x,1; = 2,/x, for all

n € N. Prove that the sequence {x,} is convergent and find
its limit.

If x >0 then 24/x is well defined and positive. It follows by
induction that each x,, n € N is well defined and positive.
Assume x, — L as n— oco. Then x,.1 — L as n — oo.
Since x2,; = (24/X,)* = 4x,, the limit theorems imply that
[2=4L. Hence L =0 or 4.

Suppose that 0 < x,, < 4 for some n € N. Then

Xnt1 = 2/Xp < 2v4 =4 and x,.1 = 2Xn /\/Xn > 2x, N4 = X,
Similarly, if x, >4 then x,11 = 2,/X, > 2v/4 =4 and

Xnt1 = 2Xp/\/Xn < 2x,/V/4 = x,. Finally, if x, =4 then

Xp11 = 24/X; = 23/4 = 4. In each of the three cases, it
follows by induction that the sequence {x,} is monotonic and
bounded. Hence it is convergent. Moreover, the sequence is
bounded below by a > 0 if it is increasing and by 4 otherwise.
Thus the limit cannot be 0.



Problem 5. Suppose {r,} is a sequence that enumerates all
rational numbers. Prove that every real number is a limit
point of this sequence.

Proof: Let « be an arbitrary real number. We need to show
that the sequence {r,} has a subsequence converging to «.
Recall that every interval (a, b) C R contains a rational
number. In particular, for any n € N there is an index k,
such that r,, € (o, +1/n). Then |r, — «| < 1/n, which
implies that r,, — o as n — oo.

The sequence {ry,} is not necessarily a subsequence of {r,} as
the sequence of indices {k,} need not be increasing. However
any rational number r can occur in it only finitely many times
(since inequalities ov < r < &+ 1/n cannot hold for arbitrarily
large n). It follows that the sequence of indices has an
increasing subsequence {k,,}. Then the sequence {ry, } is
both a subsequence of {ry,} (and hence convergent to a) and
a subsequence of {r,}.



Problem 6. For each of the following series, determine if the
series converges and if it converges absolutely:

Vn+1 \/_—|—2 cosn
()Zm+f()2 ()Zn,ogn.

The first series diverges since

Z Vn+1l—+/n Z Z 1 o
Vntl+y/no \/n+ +yn)? a5 An+1)
The second series can be represented as > (b, + ¢, cos n),
where b, = /n/n! and ¢, =2"/n! for all n € N. The series
S>> b, and > ¢, both converge (due to the Ratio
Test), and so does > °° (b, + ¢,). Since |b, + ¢,cosn| <
b, + ¢, for all n € N, the series anl(bn + ¢, cosn)
converges absolutely due to the Direct Comparison Test.

Finally, the third series converges (due to the Alternating
Series Test), but not absolutely (due to the Integral Test).



