MATH 409
 Advanced Calculus I

Lecture 18:
 Review for Test 1.

Topics for Test 1

Part I: Axiomatic model of the real numbers

- Axioms of an ordered field
- Completeness axiom
- Archimedean principle
- Principle of mathematical induction
- Countable and uncountable sets

Thomson/Bruckner/Bruckner: 1.1-1.10, 2.3

Topics for Test 1

Part II: Sequences and infinite sums

- Limits of sequences
- Bolzano-Weierstrass theorem
- Cauchy sequences
- Convergence of series
- Tests for convergence
- Absolute convergence

Thomson/Bruckner/Bruckner: 2.1-2.2, 2.4-2.13,
3.1-3.2, 3.4-3.7

Axioms of real numbers

Definition. The set \mathbb{R} of real numbers is a set satisfying the following postulates:
Postulate 1. \mathbb{R} is a field.
Postulate 2. There is a strict linear order $<$ on \mathbb{R} that makes it into an ordered field.

Postulate 3 (Completeness Axiom).

 If a nonempty subset $E \subset \mathbb{R}$ is bounded above, then E has a supremum.
Theorems to know

Theorem (Archimedean Principle) For any real number $\varepsilon>0$ there exists a natural number n such that $n \varepsilon>1$.

Theorem (Principle of mathematical induction) Let $P(n)$ be an assertion depending on a natural variable n. Suppose that

- $P(1)$ holds,
- whenever $P(k)$ holds, so does $P(k+1)$. Then $P(n)$ holds for all $n \in \mathbb{N}$.

Theorem If A_{1}, A_{2}, \ldots are finite or countable sets, then the union $A_{1} \cup A_{2} \cup \ldots$ is also finite or countable. As a consequence, the sets \mathbb{Z}, \mathbb{Q}, and $\mathbb{N} \times \mathbb{N}$ are countable.

Theorem The set \mathbb{R} is uncountable.

Limit theorems for sequences

Theorem If $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} y_{n}=a$ and
$x_{n} \leq w_{n} \leq y_{n}$ for all sufficiently large n, then $\lim _{n \rightarrow \infty} w_{n}=a$.

Theorem If $\lim _{n \rightarrow \infty} x_{n}=a, \lim _{n \rightarrow \infty} y_{n}=b$, and $x_{n} \leq y_{n}$ for all sufficiently large n, then $a \leq b$.

Theorem If $\lim _{n \rightarrow \infty} x_{n}=a$ and $\lim _{n \rightarrow \infty} y_{n}=b$, then $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=a+b, \quad \lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=a-b$, and $\lim _{n \rightarrow \infty} x_{n} y_{n}=a b$. If, additionally, $b \neq 0$ and $y_{n} \neq 0$ for all $n \in \mathbb{N}$, then $\lim _{n \rightarrow \infty} x_{n} / y_{n}=a / b$.

More theorems on sequences

Theorem Any monotonic sequence converges to a limit if bounded, and diverges to $+\infty$ or $-\infty$ otherwise.

Theorem (Bolzano-Weierstrass) Every bounded sequence of real numbers has a convergent subsequence.

Theorem Any Cauchy sequence is convergent.

Tests for convergence of series

- Trivial Test
- Cauchy Criterion
- Direct Comparison Test
- Ratio Test
- Root Test
- Condensation Test
- Integral Test
- Alternating Series Test
- Dirichlet's Test
- Abel's Test

Sample problems for Test 1

Problem 1. Prove the following version of the Archimedean property: for any positive real numbers x and y there exists a natural number n such that $n x>y$.

Problem 2. Prove that for any $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Problem 3. Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

Sample problems for Test 1

Problem 4. Let $x_{1}=a>0$ and $x_{n+1}=2 \sqrt{x_{n}}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left\{x_{n}\right\}$ is convergent and find its limit.

Problem 5. Suppose $\left\{r_{n}\right\}$ is a sequence that enumerates all rational numbers. Prove that every real number is a limit point of this sequence.

Sample problems for Test 1

Problem 6. For each of the following series, determine whether the series converges and whether it converges absolutely:
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$,
(ii) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+2^{n} \cos n}{n!}$,
(iii) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \log n}$.

Problem 1. Prove the following version of the Archimedean property: for any positive real numbers x and y there exists a natural number n such that $n x>y$.

Proof: Let E be the set of all natural numbers n such that $(n-1) x \leq y$. We are going to show that the set E is nonempty and bounded above (so that sup E exists due to the Completeness Axiom). Observe that $(1-1) x=0<y$. Hence $1 \in E$, in particular, E is not empty. Further, if $(n-1) x \leq y$ then $n-1 \leq y x^{-1}$ and $n \leq 1+y x^{-1}$. Therefore $1+y x^{-1}$ is an upper bound for E. Now we know that $m=\sup E$ is a well-defined real number. Since $\sup E$ is the least upper bound for the set E and $m-1<m$, the number $m-1$ is not an upper bound for E. Hence there exists $n \in E$ such that $n>m-1$. Then $n+1>m$, which implies that $n+1 \notin E$. At the same time, $n+1 \in \mathbb{N}$ since $n \in E \subset \mathbb{N}$. Therefore $((n+1)-1) x>y$, that is, $n x>y$.

Problem 2. Prove that for any $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4} .
$$

Proof: The proof is by induction on n. First we consider the case $n=1$. In this case the formula reduces to $1^{3}=\frac{1^{2} \cdot 2^{2}}{4}$, which is a true equality. Now assume that the formula holds for $n=k$, that is,

$$
1^{3}+2^{3}+\cdots+k^{3}=\frac{k^{2}(k+1)^{2}}{4}
$$

Adding $(k+1)^{3}$ to both sides of this equality, we get

$$
\begin{gathered}
1^{3}+2^{3}+\cdots+k^{3}+(k+1)^{3}=\frac{k^{2}(k+1)^{2}}{4}+(k+1)^{3} \\
=(k+1)^{2}\left(\frac{k^{2}}{4}+(k+1)\right)=(k+1)^{2} \frac{k^{2}+4 k+4}{4}=\frac{(k+1)^{2}(k+2)^{2}}{4},
\end{gathered}
$$

which means that the formula holds for $n=k+1$ as well. By induction, the formula holds for any natural number n.

Remark. We have proved that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Also, it is known that

$$
1+2+3+\cdots+n=\frac{n(n+1)}{2}
$$

It follows that

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=(1+2+3+\cdots+n)^{2}
$$

for all $n \in \mathbb{N}$.

Problem 3. Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

Proof: We have to prove that there is no bijective map of X onto $\mathcal{P}(X)$. Let us consider an arbitrary map $f: X \rightarrow \mathcal{P}(X)$. The image $f(x)$ of an element $x \in X$ under this map is a subset of X. We define a set

$$
E=\{x \in X \mid x \notin f(x)\} .
$$

By definition of the set E, any element $x \in X$ belongs to E if and only if it does not belong to $f(x)$. As a consequence, $E \neq f(x)$ for all $x \in X$. Hence the map f is not onto. In particular, it is not bijective.

Problem 4. Let $x_{1}=a>0$ and $x_{n+1}=2 \sqrt{x_{n}}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left\{x_{n}\right\}$ is convergent and find its limit.

If $x>0$ then $2 \sqrt{x}$ is well defined and positive. It follows by induction that each $x_{n}, n \in \mathbb{N}$ is well defined and positive.
Assume $x_{n} \rightarrow L$ as $n \rightarrow \infty$. Then $x_{n+1} \rightarrow L$ as $n \rightarrow \infty$.
Since $x_{n+1}^{2}=\left(2 \sqrt{x_{n}}\right)^{2}=4 x_{n}$, the limit theorems imply that $L^{2}=4 L$. Hence $L=0$ or 4 .
Suppose that $0<x_{n}<4$ for some $n \in \mathbb{N}$. Then $x_{n+1}=2 \sqrt{x_{n}}<2 \sqrt{4}=4$ and $x_{n+1}=2 x_{n} / \sqrt{x_{n}}>2 x_{n} / \sqrt{4}=x_{n}$. Similarly, if $x_{n}>4$ then $x_{n+1}=2 \sqrt{x_{n}}>2 \sqrt{4}=4$ and $x_{n+1}=2 x_{n} / \sqrt{x_{n}}<2 x_{n} / \sqrt{4}=x_{n}$. Finally, if $x_{n}=4$ then $x_{n+1}=2 \sqrt{x_{n}}=2 \sqrt{4}=4$. In each of the three cases, it follows by induction that the sequence $\left\{x_{n}\right\}$ is monotonic and bounded. Hence it is convergent. Moreover, the sequence is bounded below by a>0 if it is increasing and by 4 otherwise. Thus the limit cannot be 0 .

Problem 5. Suppose $\left\{r_{n}\right\}$ is a sequence that enumerates all rational numbers. Prove that every real number is a limit point of this sequence.

Proof: Let α be an arbitrary real number. We need to show that the sequence $\left\{r_{n}\right\}$ has a subsequence converging to α. Recall that every interval $(a, b) \subset \mathbb{R}$ contains a rational number. In particular, for any $n \in \mathbb{N}$ there is an index k_{n} such that $r_{k_{n}} \in(\alpha, \alpha+1 / n)$. Then $\left|r_{k_{n}}-\alpha\right|<1 / n$, which implies that $r_{k_{n}} \rightarrow \alpha$ as $n \rightarrow \infty$.
The sequence $\left\{r_{k_{n}}\right\}$ is not necessarily a subsequence of $\left\{r_{n}\right\}$ as the sequence of indices $\left\{k_{n}\right\}$ need not be increasing. However any rational number r can occur in it only finitely many times (since inequalities $\alpha<r<\alpha+1 / n$ cannot hold for arbitrarily large n). It follows that the sequence of indices has an increasing subsequence $\left\{k_{n_{m}}\right\}$. Then the sequence $\left\{r_{k_{n_{m}}}\right\}$ is both a subsequence of $\left\{r_{k_{n}}\right\}$ (and hence convergent to α) and a subsequence of $\left\{r_{n}\right\}$.

Problem 6. For each of the following series, determine if the series converges and if it converges absolutely:
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$,
(ii) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+2^{n} \cos n}{n!}$,
(iii) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \log n}$.

The first series diverges since
$\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}=\sum_{n=1}^{\infty} \frac{1}{(\sqrt{n+1}+\sqrt{n})^{2}}>\sum_{n=1}^{\infty} \frac{1}{4(n+1)}=+\infty$.
The second series can be represented as $\sum_{n=1}^{\infty}\left(b_{n}+c_{n} \cos n\right)$, where $b_{n}=\sqrt{n} / n!$ and $c_{n}=2^{n} / n!$ for all $n \in \mathbb{N}$. The series $\sum_{n=1}^{\infty} b_{n}$ and $\sum_{n=1}^{\infty} c_{n}$ both converge (due to the Ratio Test), and so does $\sum_{n=1}^{\infty}\left(b_{n}+c_{n}\right)$. Since $\left|b_{n}+c_{n} \cos n\right| \leq$ $b_{n}+c_{n}$ for all $n \in \mathbb{N}$, the series $\sum_{n=1}^{\infty}\left(b_{n}+c_{n} \cos n\right)$ converges absolutely due to the Direct Comparison Test.
Finally, the third series converges (due to the Alternating Series Test), but not absolutely (due to the Integral Test).

