
MATH 409

Advanced Calculus I

Lecture 18:
Review for Test 1.



Topics for Test 1

Part I: Axiomatic model of the real numbers

• Axioms of an ordered field

• Completeness axiom

• Archimedean principle

• Principle of mathematical induction

• Countable and uncountable sets

Thomson/Bruckner/Bruckner : 1.1–1.10, 2.3



Topics for Test 1

Part II: Sequences and infinite sums

• Limits of sequences

• Bolzano-Weierstrass theorem

• Cauchy sequences

• Convergence of series

• Tests for convergence

• Absolute convergence

Thomson/Bruckner/Bruckner : 2.1–2.2, 2.4–2.13,

3.1–3.2, 3.4–3.7



Axioms of real numbers

Definition. The set R of real numbers is a set
satisfying the following postulates:

Postulate 1. R is a field.

Postulate 2. There is a strict linear order < on R

that makes it into an ordered field.

Postulate 3 (Completeness Axiom).
If a nonempty subset E ⊂ R is bounded above,
then E has a supremum.



Theorems to know

Theorem (Archimedean Principle) For any real number
ε > 0 there exists a natural number n such that nε > 1.

Theorem (Principle of mathematical induction) Let P(n)
be an assertion depending on a natural variable n. Suppose
that
• P(1) holds,
• whenever P(k) holds, so does P(k + 1).

Then P(n) holds for all n ∈ N.

Theorem If A1,A2, . . . are finite or countable sets, then the
union A1 ∪ A2 ∪ . . . is also finite or countable. As a
consequence, the sets Z, Q, and N× N are countable.

Theorem The set R is uncountable.



Limit theorems for sequences

Theorem If lim
n→∞

xn = lim
n→∞

yn = a and

xn ≤ wn ≤ yn for all sufficiently large n, then

lim
n→∞

wn = a.

Theorem If lim
n→∞

xn = a, lim
n→∞

yn = b, and

xn ≤ yn for all sufficiently large n, then a ≤ b.

Theorem If lim
n→∞

xn = a and lim
n→∞

yn = b,

then lim
n→∞

(xn+ yn) = a+ b, lim
n→∞

(xn− yn) = a− b,

and lim
n→∞

xnyn = ab. If, additionally, b 6= 0 and

yn 6= 0 for all n ∈ N, then lim
n→∞

xn/yn = a/b.



More theorems on sequences

Theorem Any monotonic sequence converges to a
limit if bounded, and diverges to +∞ or −∞
otherwise.

Theorem (Bolzano-Weierstrass) Every bounded
sequence of real numbers has a convergent

subsequence.

Theorem Any Cauchy sequence is convergent.



Tests for convergence of series

• Trivial Test

• Cauchy Criterion

• Direct Comparison Test

• Ratio Test

• Root Test

• Condensation Test

• Integral Test

• Alternating Series Test

• Dirichlet’s Test

• Abel’s Test



Sample problems for Test 1

Problem 1. Prove the following version of the
Archimedean property: for any positive real

numbers x and y there exists a natural number n
such that nx > y .

Problem 2. Prove that for any n ∈ N,

13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
.

Problem 3. Given a set X , let P(X ) denote the

set of all subsets of X . Prove that P(X ) is not of
the same cardinality as X .



Sample problems for Test 1

Problem 4. Let x1 = a > 0 and xn+1 = 2
√
xn

for all n ∈ N. Prove that the sequence {xn} is

convergent and find its limit.

Problem 5. Suppose {rn} is a sequence that

enumerates all rational numbers. Prove that every
real number is a limit point of this sequence.



Sample problems for Test 1

Problem 6. For each of the following series,
determine whether the series converges and whether
it converges absolutely:

(i)
∞
∑

n=1

√
n + 1−√

n√
n + 1 +

√
n
, (ii)

∞
∑

n=1

√
n + 2n cos n

n!
,

(iii)
∞
∑

n=2

(−1)n

n log n
.



Problem 1. Prove the following version of the Archimedean
property: for any positive real numbers x and y there exists a
natural number n such that nx > y .

Proof: Let E be the set of all natural numbers n such that
(n − 1)x ≤ y . We are going to show that the set E is
nonempty and bounded above (so that sup E exists due to
the Completeness Axiom). Observe that (1− 1)x = 0 < y .
Hence 1 ∈ E , in particular, E is not empty. Further, if
(n − 1)x ≤ y then n − 1 ≤ yx−1 and n ≤ 1 + yx−1.
Therefore 1 + yx−1 is an upper bound for E .

Now we know that m = supE is a well-defined real number.
Since supE is the least upper bound for the set E and
m − 1 < m, the number m − 1 is not an upper bound for E .
Hence there exists n ∈ E such that n > m − 1. Then
n + 1 > m, which implies that n + 1 /∈ E . At the same time,
n + 1 ∈ N since n ∈ E ⊂ N. Therefore ((n + 1)− 1)x > y ,
that is, nx > y .



Problem 2. Prove that for any n ∈ N,

13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
.

Proof: The proof is by induction on n. First we consider the
case n = 1. In this case the formula reduces to 13 = 12·22

4
,

which is a true equality. Now assume that the formula holds
for n = k, that is,

13 + 23 + · · ·+ k3 =
k2(k + 1)2

4
.

Adding (k + 1)3 to both sides of this equality, we get

13 + 23 + · · ·+ k3 + (k + 1)3 =
k2(k + 1)2

4
+ (k + 1)3

= (k + 1)2
(

k
2

4
+ (k + 1)

)

= (k + 1)2 k
2+4k+4

4
= (k+1)2(k+2)2

4
,

which means that the formula holds for n = k + 1 as well.
By induction, the formula holds for any natural number n.



Remark. We have proved that

13 + 23 + 33 + · · ·+ n3 =
n2(n + 1)2

4
.

Also, it is known that

1 + 2 + 3 + · · ·+ n =
n(n + 1)

2
.

It follows that

13 + 23 + 33 + · · ·+ n3 = (1 + 2 + 3 + · · ·+ n)2

for all n ∈ N.



Problem 3. Given a set X , let P(X ) denote the

set of all subsets of X . Prove that P(X ) is not of
the same cardinality as X .

Proof: We have to prove that there is no bijective map of X
onto P(X ). Let us consider an arbitrary map f : X → P(X ).
The image f (x) of an element x ∈ X under this map is a
subset of X . We define a set

E = {x ∈ X | x /∈ f (x)}.
By definition of the set E , any element x ∈ X belongs to E if
and only if it does not belong to f (x). As a consequence,
E 6= f (x) for all x ∈ X . Hence the map f is not onto. In
particular, it is not bijective.



Problem 4. Let x1 = a > 0 and xn+1 = 2
√
xn for all

n ∈ N. Prove that the sequence {xn} is convergent and find
its limit.

If x > 0 then 2
√
x is well defined and positive. It follows by

induction that each xn, n ∈ N is well defined and positive.

Assume xn → L as n → ∞. Then xn+1 → L as n → ∞.
Since x2

n+1 = (2
√
xn)

2 = 4xn, the limit theorems imply that
L2 = 4L. Hence L = 0 or 4.

Suppose that 0 < xn < 4 for some n ∈ N. Then
xn+1 = 2

√
xn < 2

√
4 = 4 and xn+1 = 2xn/

√
xn > 2xn/

√
4 = xn.

Similarly, if xn > 4 then xn+1 = 2
√
xn > 2

√
4 = 4 and

xn+1 = 2xn/
√
xn < 2xn/

√
4 = xn. Finally, if xn = 4 then

xn+1 = 2
√
xn = 2

√
4 = 4. In each of the three cases, it

follows by induction that the sequence {xn} is monotonic and
bounded. Hence it is convergent. Moreover, the sequence is
bounded below by a > 0 if it is increasing and by 4 otherwise.
Thus the limit cannot be 0.



Problem 5. Suppose {rn} is a sequence that enumerates all
rational numbers. Prove that every real number is a limit
point of this sequence.

Proof: Let α be an arbitrary real number. We need to show
that the sequence {rn} has a subsequence converging to α.
Recall that every interval (a, b) ⊂ R contains a rational
number. In particular, for any n ∈ N there is an index kn
such that rkn ∈ (α, α + 1/n). Then |rkn − α| < 1/n, which
implies that rkn → α as n → ∞.

The sequence {rkn} is not necessarily a subsequence of {rn} as
the sequence of indices {kn} need not be increasing. However
any rational number r can occur in it only finitely many times
(since inequalities α < r < α+ 1/n cannot hold for arbitrarily
large n). It follows that the sequence of indices has an
increasing subsequence {knm}. Then the sequence {rknm} is
both a subsequence of {rkn} (and hence convergent to α) and
a subsequence of {rn}.



Problem 6. For each of the following series, determine if the
series converges and if it converges absolutely:

(i)

∞
∑

n=1

√
n+1−√

n√
n+1 +

√
n
, (ii)

∞
∑

n=1

√
n + 2n cos n

n!
, (iii)

∞
∑

n=2

(−1)n

n log n
.

The first series diverges since
∞
∑

n=1

√
n+1−√

n√
n+1 +

√
n
=

∞
∑

n=1

1
(√

n+1 +
√
n
)2 >

∞
∑

n=1

1

4(n+1)
= +∞.

The second series can be represented as
∑

∞

n=1(bn + cn cos n),
where bn =

√
n/n! and cn = 2n/n! for all n ∈ N. The series

∑

∞

n=1 bn and
∑

∞

n=1 cn both converge (due to the Ratio
Test), and so does

∑

∞

n=1(bn + cn). Since |bn + cn cos n| ≤
bn + cn for all n ∈ N, the series

∑

∞

n=1(bn + cn cos n)
converges absolutely due to the Direct Comparison Test.

Finally, the third series converges (due to the Alternating
Series Test), but not absolutely (due to the Integral Test).


