MATH 409 Advanced Calculus I

Lecture 19b: Topology of the real line: classification of points.

Classification of points

Let $E \subset \mathbb{R}$ be a subset of the real line and $x \in \mathbb{R}$ be a point. Recall that for any $\varepsilon > 0$ the interval $(x - \varepsilon, x + \varepsilon)$ is called the ε -**neighborhood** of the point x as it consists of all points at distance less than ε from x.

Definition. The point x is called an **interior point** of the set *E* if for some $\varepsilon > 0$ the entire ε -neighborhood $(x - \varepsilon, x + \varepsilon)$ is contained in *E*. The point x is called an **exterior point** of *E* if for some $\varepsilon > 0$ the ε -neighborhood $(x - \varepsilon, x + \varepsilon)$ is disjoint from *E*. The point x is called a **boundary point** of *E* if for any $\varepsilon > 0$ the ε -neighborhood $(x - \varepsilon, x + \varepsilon)$ contains both a point in *E* and another point not in *E*.

Remark. Every interior point of the set E must belong to E. Every exterior point of E must not belong to E. Any particular boundary point may or may not be in E.

Examples

• E = (a, b), an open interval.

The interior points are points in (a, b). The exterior points are points in $(-\infty, a) \cup (b, +\infty)$. The boundary points are a and b.

• E = [a, b], a closed interval.

The interior points are points in (a, b). The exterior points are points in $(-\infty, a) \cup (b, +\infty)$. The boundary points are a and b.

• $E = [0, 1) \cup [2, 3).$

The interior points are points in $(0,1) \cup (2,3)$. The exterior points are points in $(-\infty,0) \cup (1,2) \cup (3,+\infty)$. The boundary points are 0, 1, 2 and 3.

Examples

• $E = \mathbb{R}$, the entire real line.

Every point is interior. There are no boundary or exterior points.

• $E = \emptyset$, the empty set.

Every point is exterior. There are no interior or boundary points.

• $E = \mathbb{Q}$, the set of rational numbers.

Every open interval (a, b) contains a rational number (the rational numbers are dense). Also, (a, b) contains an irrational number (since \mathbb{Q} is countable while the interval is not). Therefore every point of \mathbb{R} is a boundary point for \mathbb{Q} . There are no interior or exterior points.

Examples

• $E = \mathbb{N}$, the natural numbers.

Every natural number is a boundary point. Any non-natural number is an exterior point. There are no interior points.

•
$$E = \{1, 1/2, 1/3, 1/4, \dots\}.$$

The boundary points are all points of E and 0. All the other point are exterior. There are no interior points.