MATH 409
 Advanced Calculus I

Lecture 19b:
 Topology of the real line: classification of points.

Classification of points

Let $E \subset \mathbb{R}$ be a subset of the real line and $x \in \mathbb{R}$ be a point. Recall that for any $\varepsilon>0$ the interval $(x-\varepsilon, x+\varepsilon)$ is called the ε-neighborhood of the point x as it consists of all points at distance less than ε from x.

Definition. The point x is called an interior point of the set E if for some $\varepsilon>0$ the entire ε-neighborhood $(x-\varepsilon, x+\varepsilon)$ is contained in E. The point x is called an exterior point of E if for some $\varepsilon>0$ the ε-neighborhood $(x-\varepsilon, x+\varepsilon)$ is disjoint from E. The point x is called a boundary point of E if for any $\varepsilon>0$ the ε-neighborhood $(x-\varepsilon, x+\varepsilon)$ contains both a point in E and another point not in E.

Remark. Every interior point of the set E must belong to E. Every exterior point of E must not belong to E. Any particular boundary point may or may not be in E.

Examples

- $E=(a, b)$, an open interval.

The interior points are points in (a, b). The exterior points are points in $(-\infty, a) \cup(b,+\infty)$. The boundary points are a and b.

- $E=[a, b]$, a closed interval.

The interior points are points in (a, b). The exterior points are points in $(-\infty, a) \cup(b,+\infty)$. The boundary points are a and b.

- $E=[0,1) \cup[2,3)$.

The interior points are points in $(0,1) \cup(2,3)$. The exterior points are points in $(-\infty, 0) \cup(1,2) \cup(3,+\infty)$. The boundary points are $0,1,2$ and 3 .

Examples

- $E=\mathbb{R}$, the entire real line.

Every point is interior. There are no boundary or exterior points.

- $E=\emptyset$, the empty set.

Every point is exterior. There are no interior or boundary points.

- $E=\mathbb{Q}$, the set of rational numbers.

Every open interval (a, b) contains a rational number (the rational numbers are dense). Also, (a, b) contains an irrational number (since \mathbb{Q} is countable while the interval is not). Therefore every point of \mathbb{R} is a boundary point for \mathbb{Q}.
There are no interior or exterior points.

Examples

- $E=\mathbb{N}$, the natural numbers.

Every natural number is a boundary point. Any non-natural number is an exterior point. There are no interior points.

- $E=\{1,1 / 2,1 / 3,1 / 4, \ldots\}$.

The boundary points are all points of E and 0 . All the other point are exterior. There are no interior points.

