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Advanced Calculus I

Lecture 22:
Limits of functions.



Limit of a function (classical definition)

Let f : E → R be a function and x0 be an interior
point of its domain E .

Definition. We say that the function f converges

to a limit L ∈ R at the point x0 if for every ε > 0
there exists δ = δ(ε) > 0 such that

0 < |x − x0| < δ implies |f (x)− L| < ε.

Notation: L = lim
x→x0

f (x) or f (x) → L as x → x0.

Remark. The set (x0 − δ, x0) ∪ (x0, x0 + δ) is called the
punctured δ-neighborhood of x0. Convergence to L means
that, given ε > 0, the image of this set under the map f is
contained in the ε-neighborhood (L− ε, L+ ε) of L provided
that δ is small enough.



Limit of a function within a set

Let f : E → R be a function and x0 be an accumulation point
of its domain E (x0 may not belong to E ).

Definition. We say that the function f converges to a limit
L ∈ R at the point x0 if for every ε > 0 there exists
δ = δ(ε) > 0 such that

0 < |x − x0| < δ and x ∈ E implies |f (x)− L| < ε.

Suppose that a function f : E1 → R is defined on a set E1

that contains E . Let g = f |E be the restriction of f to E .
If the function g converges to a limit L at x0, we say that the
function f converges to L at the point x0 within the set E .

Notation: L = lim
x→x0

x∈E

f (x).



Limits of functions vs. limits of sequences

Theorem Let f : E → R be a function and x0 be
an accumulation point of its domain E . Then

f (x) → L as x → x0 if and only if for any sequence
{xn}n∈N of elements of E different from x0,

lim
n→∞

xn = x0 implies lim
n→∞

f (xn) = L.

Remark. Using this sequential characterization of
limits, we can derive limit theorems for convergence

of functions from analogous theorems dealing with
convergence of sequences.



Limits of functions vs. limits of sequences

Proof of the theorem: Suppose that f (x) → L as x → x0.
Consider an arbitrary sequence {xn}n∈N of elements of the set
E \ {x0} converging to x0. For any ε > 0 there exists δ > 0
such that 0 < |x − x0| < δ and x ∈ E implies |f (x)− L| < ε
for all x ∈ R. Further, there exists N ∈ N such that
|xn − x0| < δ for all n ≥ N. Then |f (xn)− L| < ε for all
n ≥ N. We conclude that f (xn) → L as n → ∞.

Conversely, suppose that f (x) 6→ L as x → x0. Then there
exists ε > 0 such that for any δ > 0 the image of a set
(x0 − δ, x0 + δ)∩ E \ {x0} under the map f is not contained in
(L− ε, L+ ε). In particular, for any n ∈ N there exists a
point xn ∈ (x0 − 1/n, x0) ∪ (x0, x0 + 1/n) such that xn ∈ E

and |f (xn)− L| ≥ ε. We have that the sequence {xn}n∈N
converges to x0 and xn ∈ E \ {x0} for all n ∈ N. However
f (xn) 6→ L as n → ∞.



Limit theorems

Squeeze Theorem Let f , g , h : E → R be
functions and x0 be an accumulation point of their

common domain E . If lim
x→x0

f (x) = lim
x→x0

g(x) = L

and f (x) ≤ h(x) ≤ g(x) for all x ∈ E , then
lim
x→x0

h(x) = L.

Comparison Theorem If lim
x→x0

f (x) = L,

lim
x→x0

g(x) = M , and f (x) ≤ g(x) for all x in

a set for which x0 is an accumulation point, then

L ≤ M .



Limit theorems

Theorem Let f , g : E → R be functions and x0
be an accumulation point of their common domain

E . If lim
x→x0

f (x) = L and lim
x→x0

g(x) = M , then

lim
x→x0

(f + g)(x) = L+M ,

lim
x→x0

(f − g)(x) = L−M ,

lim
x→x0

(fg)(x) = LM .

If, additionally, M 6= 0 then

lim
x→x0

(f /g)(x) = L/M .



Divergence to infinity

Let f : E → R be a function and x0 be an

accumulation point of its domain E .

Definition. We say that the function f diverges to
+∞ at the point x0 if for every C ∈ R there exists

δ = δ(C ) > 0 such that

0 < |x − x0| < δ and x ∈ E implies f (x) > C .

Notation: lim
x→x0

f (x) = +∞ or f (x) → +∞ as

x → x0.

Similarly, we define the divergence to −∞ at the
point x0.



One-sided limits

Let f : E → R be a function defined on a set E ⊂ R.

Definition. We say that f converges to a right-hand limit
L ∈ R at a point x0 ∈ R if x0 is an accumulation point of the
set E ∩ (x0,∞) and for every ε > 0 there exists δ > 0 such
that x0 < x < x0 + δ and x ∈ E implies |f (x)− L| < ε.

Notation: L = lim
x→x0+

f (x).

Similarly, we define the left-hand limit lim
x→x0−

f (x).

Note that lim
x→x0+

f (x) = lim
x→x0

x∈E∩(x0,∞)

f (x), lim
x→x0−

f (x) = lim
x→x0

x∈E∩(−∞,x0)

f (x).

Theorem Suppose x0 is an accumulation point for both
E ∩ (x0,∞) and E ∩ (−∞, x0). Then f (x) → L as x → x0
if and only if lim

x→x0+
f (x) = lim

x→x0−
f (x) = L.



Limits at infinity

Let f : E → R be a function defined on a set

E ⊂ R.

Definition. We say that f converges to a limit
L ∈ R as x → +∞ if the domain E is unbounded

above and for every ε > 0 there exists a real
number C = C (ε) ∈ R such that

x > C and x ∈ E implies |f (x)− L| < ε.

Notation: L = lim
x→+∞

f (x) or f (x) → L as

x → +∞.

Similarly, we define the limit lim
x→−∞

f (x).



Examples

• Constant function: f (x) = c for all x ∈ R and

some c ∈ R.

lim
x→x0

f (x) = c for all x0 ∈ R. Also, lim
x→±∞

f (x) = c.

• Identity function: f (x) = x , x ∈ R.

lim
x→x0

f (x) = x0 for all x0 ∈ R. Also, lim
x→+∞

f (x) = +∞ and

lim
x→−∞

f (x) = −∞.

• Step function: f (x) =

{

1 if x > 0,
0 if x ≤ 0.

lim
x→0+

f (x) = 1, lim
x→0−

f (x) = 0.



Examples

• f : R \ {0} → R, f (x) =
1

x
.

lim
x→x0

f (x) = lim
x→x0

1
/

lim
x→x0

x = 1/x0 for all x0 6= 0,

lim
x→0+

f (x) = +∞, lim
x→0−

f (x) = −∞. Also, lim
x→±∞

f (x) = 0.

• f : R \ {0} → R, f (x) = sin
1

x
.

lim
x→0+

f (x) does not exist since f ((0, δ)) = [−1, 1] for any

δ > 0.

• f : R \ {0} → R, f (x) = x sin
1

x
.

lim
x→0

f (x) = 0 since −|x | ≤ f (x) ≤ |x |.


