MATH 409

Advanced Calculus I

Lecture 22:
 Limits of functions.

Limit of a function (classical definition)

Let $f: E \rightarrow \mathbb{R}$ be a function and x_{0} be an interior point of its domain E.
Definition. We say that the function f converges to a limit $L \in \mathbb{R}$ at the point x_{0} if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that

$$
0<\left|x-x_{0}\right|<\delta \text { implies }|f(x)-L|<\varepsilon
$$

Notation: $L=\lim _{x \rightarrow x_{0}} f(x)$ or $f(x) \rightarrow L$ as $x \rightarrow x_{0}$.
Remark. The set $\left(x_{0}-\delta, x_{0}\right) \cup\left(x_{0}, x_{0}+\delta\right)$ is called the punctured δ-neighborhood of x_{0}. Convergence to L means that, given $\varepsilon>0$, the image of this set under the map f is contained in the ε-neighborhood ($L-\varepsilon, L+\varepsilon$) of L provided that δ is small enough.

Limit of a function within a set

Let $f: E \rightarrow \mathbb{R}$ be a function and x_{0} be an accumulation point of its domain E (x_{0} may not belong to E).

Definition. We say that the function f converges to a limit $L \in \mathbb{R}$ at the point x_{0} if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that

$$
0<\left|x-x_{0}\right|<\delta \text { and } x \in E \text { implies }|f(x)-L|<\varepsilon
$$

Suppose that a function $f: E_{1} \rightarrow \mathbb{R}$ is defined on a set E_{1} that contains E. Let $g=\left.f\right|_{E}$ be the restriction of f to E. If the function g converges to a limit L at x_{0}, we say that the function f converges to L at the point x_{0} within the set E.

Notation: $L=\lim _{\substack{x \rightarrow x_{0} \\ x \in E}} f(x)$.

Limits of functions vs. limits of sequences

Theorem Let $f: E \rightarrow \mathbb{R}$ be a function and x_{0} be an accumulation point of its domain E. Then $f(x) \rightarrow L$ as $x \rightarrow x_{0}$ if and only if for any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of elements of E different from x_{0},

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0} \quad \text { implies } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L .
$$

Remark. Using this sequential characterization of limits, we can derive limit theorems for convergence of functions from analogous theorems dealing with convergence of sequences.

Limits of functions vs. limits of sequences

Proof of the theorem: Suppose that $f(x) \rightarrow L$ as $x \rightarrow x_{0}$. Consider an arbitrary sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of elements of the set $E \backslash\left\{x_{0}\right\}$ converging to x_{0}. For any $\varepsilon>0$ there exists $\delta>0$ such that $0<\left|x-x_{0}\right|<\delta$ and $x \in E$ implies $|f(x)-L|<\varepsilon$ for all $x \in \mathbb{R}$. Further, there exists $N \in \mathbb{N}$ such that $\left|x_{n}-x_{0}\right|<\delta$ for all $n \geq N$. Then $\left|f\left(x_{n}\right)-L\right|<\varepsilon$ for all $n \geq N$. We conclude that $f\left(x_{n}\right) \rightarrow L$ as $n \rightarrow \infty$.
Conversely, suppose that $f(x) \nrightarrow L$ as $x \rightarrow x_{0}$. Then there exists $\varepsilon>0$ such that for any $\delta>0$ the image of a set $\left(x_{0}-\delta, x_{0}+\delta\right) \cap E \backslash\left\{x_{0}\right\}$ under the map f is not contained in $(L-\varepsilon, L+\varepsilon)$. In particular, for any $n \in \mathbb{N}$ there exists a point $x_{n} \in\left(x_{0}-1 / n, x_{0}\right) \cup\left(x_{0}, x_{0}+1 / n\right)$ such that $x_{n} \in E$ and $\left|f\left(x_{n}\right)-L\right| \geq \varepsilon$. We have that the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ converges to x_{0} and $x_{n} \in E \backslash\left\{x_{0}\right\}$ for all $n \in \mathbb{N}$. However $f\left(x_{n}\right) \nrightarrow L$ as $n \rightarrow \infty$.

Limit theorems

Squeeze Theorem Let $f, g, h: E \rightarrow \mathbb{R}$ be functions and x_{0} be an accumulation point of their common domain E. If $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=L$ and $f(x) \leq h(x) \leq g(x)$ for all $x \in E$, then $\lim _{x \rightarrow x_{0}} h(x)=L$.

Comparison Theorem If $\lim _{x \rightarrow x_{0}} f(x)=L$, $\lim _{x \rightarrow x_{0}} g(x)=M$, and $f(x) \leq g(x)$ for all x in a set for which x_{0} is an accumulation point, then $L \leq M$.

Limit theorems

Theorem Let $f, g: E \rightarrow \mathbb{R}$ be functions and x_{0} be an accumulation point of their common domain E. If $\lim _{x \rightarrow x_{0}} f(x)=L$ and $\lim _{x \rightarrow x_{0}} g(x)=M$, then

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}}(f+g)(x) & =L+M, \\
\lim _{x \rightarrow x_{0}}(f-g)(x) & =L-M, \\
\lim _{x \rightarrow x_{0}}(f g)(x) & =L M .
\end{aligned}
$$

If, additionally, $M \neq 0$ then

$$
\lim _{x \rightarrow x_{0}}(f / g)(x)=L / M
$$

Divergence to infinity

Let $f: E \rightarrow \mathbb{R}$ be a function and x_{0} be an accumulation point of its domain E.

Definition. We say that the function f diverges to $+\infty$ at the point x_{0} if for every $C \in \mathbb{R}$ there exists $\delta=\delta(C)>0$ such that
$0<\left|x-x_{0}\right|<\delta$ and $x \in E$ implies $f(x)>C$.
Notation: $\lim _{x \rightarrow x_{0}} f(x)=+\infty$ or $f(x) \rightarrow+\infty$ as $x \rightarrow x_{0}$.

Similarly, we define the divergence to $-\infty$ at the point x_{0}.

One-sided limits

Let $f: E \rightarrow \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$.
Definition. We say that f converges to a right-hand limit $L \in \mathbb{R}$ at a point $x_{0} \in \mathbb{R}$ if x_{0} is an accumulation point of the set $E \cap\left(x_{0}, \infty\right)$ and for every $\varepsilon>0$ there exists $\delta>0$ such that $x_{0}<x<x_{0}+\delta$ and $x \in E$ implies $|f(x)-L|<\varepsilon$.

Notation: $L=\lim _{x \rightarrow x_{0}+} f(x)$.
Similarly, we define the left-hand limit $\lim _{x \rightarrow x_{0}-} f(x)$.
Note that $\lim _{x \rightarrow x_{0}+} f(x)=\lim _{x \rightarrow x_{0}} f(x), \lim _{x \rightarrow x_{0}-} f(x)=\lim _{x \rightarrow x_{0}} f(x)$.

$$
x \in \operatorname{En}\left(x_{0}, \infty\right)
$$

$$
x \in E \cap\left(-\infty, x_{0}\right)
$$

Theorem Suppose x_{0} is an accumulation point for both $E \cap\left(x_{0}, \infty\right)$ and $E \cap\left(-\infty, x_{0}\right)$. Then $f(x) \rightarrow L$ as $x \rightarrow x_{0}$ if and only if $\lim _{x \rightarrow x_{0}+} f(x)=\lim _{x \rightarrow x_{0}-} f(x)=L$.

Limits at infinity

Let $f: E \rightarrow \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$.

Definition. We say that f converges to a limit $L \in \mathbb{R}$ as $x \rightarrow+\infty$ if the domain E is unbounded above and for every $\varepsilon>0$ there exists a real number $C=C(\varepsilon) \in \mathbb{R}$ such that

$$
x>C \text { and } x \in E \text { implies }|f(x)-L|<\varepsilon
$$

Notation: $L=\lim _{x \rightarrow+\infty} f(x)$ or $f(x) \rightarrow L$ as $x \rightarrow+\infty$.

Similarly, we define the limit $\lim _{x \rightarrow-\infty} f(x)$.

Examples

- Constant function: $f(x)=c$ for all $x \in \mathbb{R}$ and some $c \in \mathbb{R}$. $\lim _{x \rightarrow x_{0}} f(x)=c$ for all $x_{0} \in \mathbb{R}$. Also, $\lim _{x \rightarrow \pm \infty} f(x)=c$.
- Identity function: $f(x)=x, x \in \mathbb{R}$.
$\lim _{x \rightarrow x_{0}} f(x)=x_{0}$ for all $x_{0} \in \mathbb{R}$. Also, $\lim _{x \rightarrow+\infty} f(x)=+\infty$ and $\lim _{x \rightarrow-\infty} f(x)=-\infty$.
- Step function: $f(x)= \begin{cases}1 & \text { if } x>0, \\ 0 & \text { if } x \leq 0 .\end{cases}$ $\lim _{x \rightarrow 0+} f(x)=1, \quad \lim _{x \rightarrow 0-} f(x)=0$.

Examples

- $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, \quad f(x)=\frac{1}{x}$.
$\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} 1 / \lim _{x \rightarrow x_{0}} x=1 / x_{0}$ for all $x_{0} \neq 0$,
$\lim _{x \rightarrow 0+} f(x)=+\infty, \lim _{x \rightarrow 0-} f(x)=-\infty$. Also, $\lim _{x \rightarrow \pm \infty} f(x)=0$.
- $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, f(x)=\sin \frac{1}{x}$.
$\lim _{x \rightarrow 0+} f(x)$ does not exist since $f((0, \delta))=[-1,1]$ for any $\delta>0$.
- $f: \mathbb{R} \backslash\{0\} \rightarrow \mathbb{R}, f(x)=x \sin \frac{1}{x}$. $\lim _{x \rightarrow 0} f(x)=0$ since $-|x| \leq f(x) \leq|x|$.

