
MATH 409

Advanced Calculus I

Lecture 23:
Limits of functions (continued).



Limit of a function

Let f : E → R be a function defined on a set E ⊂ R.

[Classical definition] We say that f converges to a limit
L ∈ R at an interior point x0 of the domain E if

∀ε > 0 ∃δ > 0 ∀x : 0 < |x − x0| < δ =⇒ |f (x)− L| < ε.

Notation: L = lim
x→x0

f (x) or f (x) → L as x → x0.

[General definition] The function f is eligible to have
lim
x→x0

f (x) if x0 is an accumulation point of the domain E .

Assuming this, we say that f (x) → L ∈ R as x → x0 if

∀ε> 0 ∃δ > 0 ∀x ∈E : 0< |x − x0|<δ =⇒ |f (x)−L|<ε.

[Limit within a set] The limit of the function f at a point x0
within a subset E0 ⊂ E of the domain, denoted lim

x→x0
x∈E0

f (x),

is lim
x→x0

f |E0
(x), the limit of the restriction f |E0

.



Let f : E → R be a function defined on a set E ⊂ R.

[One-sided limits] The right-hand limit of the function f at
a point x0, denoted lim

x→x0+
f (x), is the limit at x0 within the

set E ∩ (x0,∞). The left-hand limit f at a point x0, denoted
lim

x→x0−
f (x), is the limit at x0 within the set E ∩ (−∞, x0).

[Divergence to infinity / Infinite limits] To define
divergence of the function f to +∞ at a point x0 instead of
convergence to a finite limit L, the requirement |f (x)− L| < ε
is replaced by f (x) > 1/ε. For divergence to −∞, the new
requirement is f (x) < −1/ε.

[Limit at infinity] Function f is eligible to have lim
x→+∞

f (x),

resp. lim
x→−∞

f (x), if the domain E is unbounded above (resp.

below). In the definition, the condition 0 < |x − x0| < δ is
replaced by x > 1/δ (resp. x < −1/δ).



Limits of functions vs. limits of sequences

Theorem Suppose f : E → R is a function
eligible to have a limit lim

x→x0

f (x). Then f (x) → L

as x → x0 if and only if for any sequence {xn}n∈N
of elements of E different from x0,

lim
n→∞

xn = x0 implies lim
n→∞

f (xn) = L.

Remark. In the theorem, x0 can be a finite number

or +∞ or −∞. Likewise, the limit L can be a
finite number or +∞ or −∞.



Limit theorems

Squeeze Theorem Let f , g , h : E → R be
functions and x0 be an accumulation point of their

common domain E . If lim
x→x0

f (x) = lim
x→x0

g(x) = L

and f (x) ≤ h(x) ≤ g(x) for all x ∈ E , then
lim
x→x0

h(x) = L.

Comparison Theorem If lim
x→x0

f (x) = L,

lim
x→x0

g(x) = M , and f (x) ≤ g(x) for all x in

a set for which x0 is an accumulation point, then

L ≤ M .



Limit theorems

Theorem Let f , g : E → R be functions and x0
be an accumulation point of their common domain

E . If lim
x→x0

f (x) = L and lim
x→x0

g(x) = M , then

lim
x→x0

(f + g)(x) = L+M ,

lim
x→x0

(f − g)(x) = L−M ,

lim
x→x0

(fg)(x) = LM .

If, additionally, M 6= 0 then

lim
x→x0

(f /g)(x) = L/M .



Trigonometric functions

sin θ = y

cos θ = x

tan θ = y/x

Theorem 0 ≤ sin θ ≤ θ ≤ tan θ for θ ∈ [0, π/2).

sin θ = |segment AB |

θ = |arc CB |
tan θ = |segment CD|



Limits of trigonometric functions

• lim
x→0

sin x = 0.

We know that 0 ≤ sin θ ≤ θ for θ ∈ [0, π/2). Since
sin(−θ) = − sin θ, we obtain that −θ ≤ sin(−θ) ≤ 0 for
θ ∈ [0, π/2). It follows that |sin θ| ≤ |θ| whenever
|θ| < π/2. As a consequence, sin θ → 0 as θ → 0.

• lim
x→0

cos2x = 1.

Using a trigonometric formula sin2x + cos2x = 1, we obtain

lim
x→0

cos2x = lim
x→0

(1− sin2x) = 1−
(

lim
x→0

sin x
)2

= 1− 02 = 1.



• lim
x→0

cos x = 1.

We know that 0 ≤ sin x ≤ x ≤ tan x for 0 ≤ x < π/2.
It follows that 0 < cos x ≤ 1 for 0 < x < π/2. Moreover,
cos(−x) = cos x so that 0 < cos x ≤ 1 if 0 < |x | < π/2.
Therefore cos2x ≤ cos x ≤ 1 whenever 0 < |x | < π/2. Since
lim
x→0

cos2x = lim
x→0

1 = 1, the Squeeze Theorem implies that

cos x → 1 as x → 0.

• lim
x→0

sin x

x
= 1.

We know that 0 ≤ sin x ≤ x ≤ tan x for 0 ≤ x < π/2.

Therefore cos x ≤
sin x

x
≤ 1 for 0 < x < π/2. Since

sin(−x) = − sin x and cos(−x) = cos x , the latter
inequalities also hold for −π/2 < x < 0. It remains to apply
the Squeeze Theorem.



Limit of the composition

Let f : E1 → R and g : E2 → R be two functions. If
f (E1) ⊂ E2, then the composition (g ◦ f )(x) = g(f (x)) is a
well defined function on E1.

Theorem Suppose lim
x→x0

f (x) = y0 and lim
y→y0

g(y ) = L. If,

additionally, g(y0) = L or f does not take the value y0 at all,
then lim

x→x0
(g ◦ f )(x) = L.

Proof: Consider an arbitrary sequence {xn} ⊂ E1 such that
each xn 6= x0 and xn → x0 as n → ∞. We have to show
that g(f (xn)) → L as n → ∞. Since lim

x→x0
f (x) = y0, we

obtain that f (xn) → y0 as n → ∞. Note that f (xn) ∈ E2.
If each f (xn) 6= y0, then lim

n→∞

g(f (xn)) = L since

lim
y→y0

g(y ) = L. Otherwise g(y0) = L so that we have

required convergence anyway.



Examples

• lim
x→0

sin 2x

2x
= 1.

A function h(x) =
sin 2x

2x
, which is defined for x 6= 0, is the

composition of two function, f (x) = 2x and g(x) =
sin x

x
,

both defined for x 6= 0. Note that f never takes the value 0.
Since lim

x→0
f (x) = 0 and lim

y→0
g(y ) = 1, it follows that

lim
x→0

h(x) = lim
x→0

g(f (x)) = 1.

• lim
x→0

sin 2x

sin x
= 2.

lim
x→0

sin 2x

sin x
= lim

x→0
2
sin 2x

2x
:
sin x

x
= 2 lim

x→0

sin 2x

2x

/

lim
x→0

sin x

x
= 2.



Exotic functions

• Dirichlet function: f (x) =

{

1 if x ∈ Q,
0 if x ∈ R \Q.

lim
x→x0

f (x) never exists since f ((a, b)) = {0, 1} for any interval

(a, b). In other words, both rational and irrational points are
dense in R.

• Riemann function:

f (x) =

{

1/q if x = p/q, a reduced fraction,

0 if x ∈ R \Q.

lim
x→x0

f (x) = 0 for all x0 ∈ R. Indeed, for any n ∈ N and any

bounded interval (a, b), there are only finitely many points
x ∈ (a, b) such that f (x) ≥ 1/n. On the other hand,
lim

x→+∞

f (x) and lim
x→−∞

f (x) do not exist.


