MATH 409
Advanced Calculus I

Lecture 23:
 Limits of functions (continued).

Limit of a function

Let $f: E \rightarrow \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$.
[Classical definition] We say that f converges to a limit $L \in \mathbb{R}$ at an interior point x_{0} of the domain E if

$$
\forall \varepsilon>0 \exists \delta>0 \quad \forall x: \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

Notation: $L=\lim _{x \rightarrow x_{0}} f(x)$ or $f(x) \rightarrow L$ as $x \rightarrow x_{0}$.
[General definition] The function f is eligible to have $\lim _{x \rightarrow x_{0}} f(x)$ if x_{0} is an accumulation point of the domain E. Assuming this, we say that $f(x) \rightarrow L \in \mathbb{R}$ as $x \rightarrow x_{0}$ if

$$
\forall \varepsilon>0 \quad \exists \delta>0 \quad \forall x \in E: \quad 0<\left|x-x_{0}\right|<\delta \Longrightarrow|f(x)-L|<\varepsilon .
$$

[Limit within a set] The limit of the function f at a point x_{0} within a subset $E_{0} \subset E$ of the domain, denoted $\lim _{x \rightarrow x_{0}} f(x)$, is $\left.\lim _{x \rightarrow x_{0}} f\right|_{E_{0}}(x)$, the limit of the restriction $\left.f\right|_{E_{0}} . \quad x \in E_{0}$

Let $f: E \rightarrow \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$.
[One-sided limits] The right-hand limit of the function f at a point x_{0}, denoted $\lim _{x \rightarrow x_{0}+} f(x)$, is the limit at x_{0} within the set $E \cap\left(x_{0}, \infty\right)$. The left-hand limit f at a point x_{0}, denoted $\lim _{x \rightarrow x_{0}-} f(x)$, is the limit at x_{0} within the set $E \cap\left(-\infty, x_{0}\right)$.
[Divergence to infinity / Infinite limits] To define divergence of the function f to $+\infty$ at a point x_{0} instead of convergence to a finite limit L, the requirement $|f(x)-L|<\varepsilon$ is replaced by $f(x)>1 / \varepsilon$. For divergence to $-\infty$, the new requirement is $f(x)<-1 / \varepsilon$.
[Limit at infinity] Function f is eligible to have $\lim _{x \rightarrow+\infty} f(x)$, resp. $\lim _{x \rightarrow-\infty} f(x)$, if the domain E is unbounded above (resp. below). In the definition, the condition $0<\left|x-x_{0}\right|<\delta$ is replaced by $x>1 / \delta$ (resp. $x<-1 / \delta$).

Limits of functions vs. limits of sequences

Theorem Suppose $f: E \rightarrow \mathbb{R}$ is a function eligible to have a limit $\lim _{x \rightarrow x_{0}} f(x)$. Then $f(x) \rightarrow L$ as $x \rightarrow x_{0}$ if and only if for any sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ of elements of E different from x_{0},

$$
\lim _{n \rightarrow \infty} x_{n}=x_{0} \quad \text { implies } \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L
$$

Remark. In the theorem, x_{0} can be a finite number or $+\infty$ or $-\infty$. Likewise, the limit L can be a finite number or $+\infty$ or $-\infty$.

Limit theorems

Squeeze Theorem Let $f, g, h: E \rightarrow \mathbb{R}$ be functions and x_{0} be an accumulation point of their common domain E. If $\lim _{x \rightarrow x_{0}} f(x)=\lim _{x \rightarrow x_{0}} g(x)=L$ and $f(x) \leq h(x) \leq g(x)$ for all $x \in E$, then $\lim _{x \rightarrow x_{0}} h(x)=L$.

Comparison Theorem If $\lim _{x \rightarrow x_{0}} f(x)=L$, $\lim _{x \rightarrow x_{0}} g(x)=M$, and $f(x) \leq g(x)$ for all x in a set for which x_{0} is an accumulation point, then $L \leq M$.

Limit theorems

Theorem Let $f, g: E \rightarrow \mathbb{R}$ be functions and x_{0} be an accumulation point of their common domain E. If $\lim _{x \rightarrow x_{0}} f(x)=L$ and $\lim _{x \rightarrow x_{0}} g(x)=M$, then

$$
\begin{aligned}
\lim _{x \rightarrow x_{0}}(f+g)(x) & =L+M, \\
\lim _{x \rightarrow x_{0}}(f-g)(x) & =L-M, \\
\lim _{x \rightarrow x_{0}}(f g)(x) & =L M .
\end{aligned}
$$

If, additionally, $M \neq 0$ then

$$
\lim _{x \rightarrow x_{0}}(f / g)(x)=L / M
$$

Trigonometric functions

$$
\begin{aligned}
& \sin \theta=y \\
& \cos \theta=x \\
& \tan \theta=y / x
\end{aligned}
$$

Theorem $0 \leq \sin \theta \leq \theta \leq \tan \theta$ for $\theta \in[0, \pi / 2)$.

$\sin \theta=\mid$ segment $A B \mid$
$\theta=|\operatorname{arc} C B|$
$\tan \theta=\mid$ segment $C D \mid$

Limits of trigonometric functions

- $\lim _{x \rightarrow 0} \sin x=0$.

We know that $0 \leq \sin \theta \leq \theta$ for $\theta \in[0, \pi / 2)$. Since $\sin (-\theta)=-\sin \theta$, we obtain that $-\theta \leq \sin (-\theta) \leq 0$ for $\theta \in[0, \pi / 2)$. It follows that $|\sin \theta| \leq|\theta|$ whenever $|\theta|<\pi / 2$. As a consequence, $\sin \theta \rightarrow 0$ as $\theta \rightarrow 0$.

- $\lim _{x \rightarrow 0} \cos ^{2} x=1$.

Using a trigonometric formula $\sin ^{2} x+\cos ^{2} x=1$, we obtain $\lim _{x \rightarrow 0} \cos ^{2} x=\lim _{x \rightarrow 0}\left(1-\sin ^{2} x\right)=1-\left(\lim _{x \rightarrow 0} \sin x\right)^{2}=1-0^{2}=1$.

- $\lim _{x \rightarrow 0} \cos x=1$.

$$
x \rightarrow 0
$$

We know that $0 \leq \sin x \leq x \leq \tan x$ for $0 \leq x<\pi / 2$. It follows that $0<\cos x \leq 1$ for $0<x<\pi / 2$. Moreover, $\cos (-x)=\cos x$ so that $0<\cos x \leq 1$ if $0<|x|<\pi / 2$. Therefore $\cos ^{2} x \leq \cos x \leq 1$ whenever $0<|x|<\pi / 2$. Since $\lim _{x \rightarrow 0} \cos ^{2} x=\lim _{x \rightarrow 0} 1=1$, the Squeeze Theorem implies that $\cos x \rightarrow 1$ as $x \rightarrow 0$.

- $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

We know that $0 \leq \sin x \leq x \leq \tan x$ for $0 \leq x<\pi / 2$.
Therefore $\cos x \leq \frac{\sin x}{x} \leq 1$ for $0<x<\pi / 2$. Since $\sin (-x)=-\sin x$ and $\cos (-x)=\cos x$, the latter inequalities also hold for $-\pi / 2<x<0$. It remains to apply the Squeeze Theorem.

Limit of the composition

Let $f: E_{1} \rightarrow \mathbb{R}$ and $g: E_{2} \rightarrow \mathbb{R}$ be two functions. If $f\left(E_{1}\right) \subset E_{2}$, then the composition $(g \circ f)(x)=g(f(x))$ is a well defined function on E_{1}.

Theorem Suppose $\lim _{x \rightarrow x_{0}} f(x)=y_{0}$ and $\lim _{y \rightarrow y_{0}} g(y)=L$. If, additionally, $g\left(y_{0}\right)=L$ or f does not take the value y_{0} at all, then $\lim _{x \rightarrow x_{0}}(g \circ f)(x)=L$.
Proof: Consider an arbitrary sequence $\left\{x_{n}\right\} \subset E_{1}$ such that each $x_{n} \neq x_{0}$ and $x_{n} \rightarrow x_{0}$ as $n \rightarrow \infty$. We have to show that $g\left(f\left(x_{n}\right)\right) \rightarrow L$ as $n \rightarrow \infty$. Since $\lim _{x \rightarrow x_{0}} f(x)=y_{0}$, we obtain that $f\left(x_{n}\right) \rightarrow y_{0}$ as $n \rightarrow \infty$. Note that $f\left(x_{n}\right) \in E_{2}$. If each $f\left(x_{n}\right) \neq y_{0}$, then $\lim _{n \rightarrow \infty} g\left(f\left(x_{n}\right)\right)=L$ since $\lim _{y \rightarrow y_{0}} g(y)=L$. Otherwise $g\left(y_{0}\right)=L$ so that we have required convergence anyway.

Examples

- $\lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x}=1$.

A function $h(x)=\frac{\sin 2 x}{2 x}$, which is defined for $x \neq 0$, is the composition of two function, $f(x)=2 x$ and $g(x)=\frac{\sin x}{x}$, both defined for $x \neq 0$. Note that f never takes the value 0 . Since $\lim _{x \rightarrow 0} f(x)=0$ and $\lim _{y \rightarrow 0} g(y)=1$, it follows that $\lim _{x \rightarrow 0} h(x)=\lim _{x \rightarrow 0} g(f(x))=1$.

- $\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin x}=2$.
$\lim _{x \rightarrow 0} \frac{\sin 2 x}{\sin x}=\lim _{x \rightarrow 0} 2 \frac{\sin 2 x}{2 x}: \frac{\sin x}{x}=2 \lim _{x \rightarrow 0} \frac{\sin 2 x}{2 x} / \lim _{x \rightarrow 0} \frac{\sin x}{x}=2$.

Exotic functions

- Dirichlet function: $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}$
$\lim _{x \rightarrow x_{0}} f(x)$ never exists since $f((a, b))=\{0,1\}$ for any interval (a, b). In other words, both rational and irrational points are dense in \mathbb{R}.
- Riemann function:
$f(x)=\left\{\begin{array}{cl}1 / q & \text { if } x=p / q, \text { a reduced fraction, } \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q} .\end{array}\right.$
$\lim _{x \rightarrow x_{0}} f(x)=0$ for all $x_{0} \in \mathbb{R}$. Indeed, for any $n \in \mathbb{N}$ and any bounded interval (a, b), there are only finitely many points $x \in(a, b)$ such that $f(x) \geq 1 / n$. On the other hand, $\lim _{x \rightarrow+\infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ do not exist.

