## MATH 409 <br> Advanced Calculus I

Lecture 24:
Continuity.
Properties of continuous functions.

## Continuity

Definition. Given a set $E \subset \mathbb{R}$, a function $f: E \rightarrow \mathbb{R}$, and a point $c \in E$, the function $f$ is continuous at $c$ if for any $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-c|<\delta$ and $x \in E$ imply $|f(x)-f(c)|<\varepsilon$.
We say that the function $f$ is continuous on a set $E_{0} \subset E$ if $f$ is continuous at every point $c \in E_{0}$. The function $f$ is continuous if it is continuous on the entire domain $E$.

Remarks. - If $c$ is an accumulation point of $E$ (and $c \in E$ ) then the function $f$ is continuous at $c$ if and only if
$f(c)=\lim _{x \rightarrow c} f(x)$.

- If $c$ is an isolated point of the domain $E$ then the function $f$ is vacuously continuous at $c$.
- In the case $E=[a, b]$, the function $f$ is continuous at a if $f(a)=\lim _{x \rightarrow a+} f(x)$ and continuous at $b$ if $f(b)=\lim _{x \rightarrow b-} f(x)$.


## Examples

- Constant function: $f(x)=a$ for all $x \in \mathbb{R}$ and some $a \in \mathbb{R}$.

Since $\lim _{x \rightarrow c} f(x)=a$ for any $c \in \mathbb{R}$, the function $f$ is continuous.

- Identity function: $f(x)=x, x \in \mathbb{R}$.

Since $\lim _{x \rightarrow c} f(x)=c$ for any $c \in \mathbb{R}$, the function is continuous.

- Step function: $f(x)= \begin{cases}1 & \text { if } x>0, \\ 0 & \text { if } x \leq 0 .\end{cases}$

Since $\lim _{x \rightarrow 0-} f(x)=0$ and $\lim _{x \rightarrow 0+} f(x)=1$, the function is not continuous at 0 . It is continuous on $\mathbb{R} \backslash\{0\}$.

Theorem A function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of $E, x_{n} \rightarrow c$ as $n \rightarrow \infty$ implies $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$.

Theorem Suppose that functions $f, g: E \rightarrow \mathbb{R}$ are both continuous at a point $c \in E$. Then the functions $f+g, f-g$, and $f g$ are also continuous at $c$. If, additionally, $g(c) \neq 0$, then the function $f / g$ is continuous at $c$ as well.

## Examples of continuous functions

- Power function: $f(x)=x^{n}, x \in \mathbb{R}$, where $n \in \mathbb{N}$.
Since the identity function is continuous and $x^{k+1}=x^{k} x$ for all $k \in \mathbb{N}$, it follows by induction on $n$ that $f$ is continuous.
- Polynomial: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$.

Since constant functions and power functions are continuous, so are the functions $f_{k}(x)=a_{k} x^{k}, x \in \mathbb{R}$. Then $f$ is continuous as a finite sum of continuous functions.

- Rational function: $f(x)=p(x) / q(x)$, where $p$ and $q$ are polynomials.
Since $p$ and $q$ are continuous, the function $f$ is continuous on its entire domain $\{x \in \mathbb{R} \mid q(x) \neq 0\}$.

Given a function $f:(a, b) \rightarrow \mathbb{R}$ and a point $c \in(a, b)$, let $f_{1}$ denote the restriction of $f$ to the interval $(a, c]$ and $f_{2}$ denote the restriction of $f$ to $[c, b)$.

Theorem The function $f$ is continuous if and only if both restrictions $f_{1}$ and $f_{2}$ are continuous.
Proof: For any $x \in(a, c)$, the continuity of $f$ at $x$ is equivalent to the continuity of $f_{1}$ at $x$. Likewise, the continuity of $f$ at a point $y \in(c, b)$ is equivalent to the continuity of $f_{2}$ at $y$. The function $f$ is continuous at $c$ if $f(x) \rightarrow f(c)$ as $x \rightarrow c$. The restriction $f_{1}$ is continuous at $c$ if $f(x) \rightarrow f(c)$ as $x \rightarrow c-$. The restriction $f_{2}$ is continuous at $c$ if $f(x) \rightarrow f(c)$ as $x \rightarrow c+$. Therefore $f$ is continuous at $c$ if and only if both $f_{1}$ and $f_{2}$ are continuous at $c$.

Example. The function $f(x)=|x|$ is continuous on $\mathbb{R}$. Indeed, $f$ coincides with the function $g(x)=x$ on $[0, \infty)$ and with the function $h(x)=-x$ on $(-\infty, 0]$.

## Continuity of the composition

Let $f: E_{1} \rightarrow \mathbb{R}$ and $g: E_{2} \rightarrow \mathbb{R}$ be two functions. If $f\left(E_{1}\right) \subset E_{2}$, then the composition $(g \circ f)(x)=g(f(x))$ is a well defined function on $E_{1}$.

Theorem If $f$ is continuous at a point $c \in E_{1}$ and $g$ is continuous at $f(c)$, then $g \circ f$ is continuous at $c$.
Proof: Let us use the sequential characterization of continuity. Consider an arbitrary sequence $\left\{x_{n}\right\} \subset E_{1}$ converging to $c$. We have to show that

$$
(g \circ f)\left(x_{n}\right) \rightarrow(g \circ f)(c) \text { as } n \rightarrow \infty .
$$

Since the function $f$ is continuous at $c$, we obtain that $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$. Moreover, all elements of the sequence $\left\{f\left(x_{n}\right)\right\}$ belong to the set $E_{2}$. Since the function $g$ is continuous at $f(c)$, we obtain that $g\left(f\left(x_{n}\right)\right) \rightarrow g(f(c))$ as $n \rightarrow \infty$.

## Examples of continuous functions

- If a function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$, then a function $g(x)=|f(x)|, x \in E$, is also continuous at $c$.

Indeed, the function $g$ is the composition of $f$ with the continuous function $h(x)=|x|$.

- If functions $f, g: E \rightarrow \mathbb{R}$ are continuous at a point $c \in E$, then functions $\max (f, g)$ and $\min (f, g)$ are also continuous at $c$.
Indeed, $\max (f(x), g(x))=\frac{1}{2}(f(x)+g(x))+\frac{1}{2}|f(x)-g(x)|$ and $\min (f(x), g(x))=\frac{1}{2}(f(x)+g(x))-\frac{1}{2}|f(x)-g(x)|$ for all $x \in E$.


## Trigonometric functions



$$
\begin{aligned}
& \sin \theta=y \\
& \cos \theta=x \\
& \tan \theta=y / x
\end{aligned}
$$

## Theorem $0 \leq \sin \theta \leq \theta \leq \tan \theta$ for $\theta \in[0, \pi / 2)$.


$\sin \theta=\mid$ segment $A B \mid$
$\theta=|\operatorname{arc} C B|$
$\tan \theta=\mid$ segment $C D \mid$

## Examples of continuous functions

- $f(x)=\sin x, x \in \mathbb{R}$.

We know that $0 \leq \sin \theta \leq \theta$ for $\theta \in[0, \pi / 2)$. Since $\sin (-\theta)=-\sin \theta$, we get $|\sin \theta| \leq|\theta|$ if $|\theta|<\pi / 2$. In the case $|\theta| \geq \pi / 2$, this estimate holds too as $|\sin \theta| \leq 1<\pi / 2$. Also, $|\cos \theta| \leq 1$ for all $\theta$. Using the trigonometric formula

$$
\sin x-\sin c=2 \sin \frac{x-c}{2} \cos \frac{x+c}{2},
$$

we obtain $|\sin x-\sin c| \leq 2\left|\sin \frac{x-c}{2}\right|\left|\cos \frac{x+c}{2}\right| \leq 2\left|\frac{x-c}{2}\right|$ $=|x-c|$. It follows that $\sin x \rightarrow \sin c$ as $x \rightarrow c$ for every $c \in \mathbb{R}$. That is, the function $\sin x$ is continuous.

- $f(x)=\cos x, x \in \mathbb{R}$.

Since $\cos x=\sin (x+\pi / 2)$ for all $x \in \mathbb{R}$, the function $f$ is a composition of two continuous functions, $g(x)=x+\pi / 2$ and $h(x)=\sin x$. Therefore it is continuous as well.

## Examples of continuous functions

- $f(x)=\tan x$.

Since $f(x)=\frac{\sin x}{\cos x}$, the function $f$ is continuous on its entire domain $\mathbb{R} \backslash\{x \in \mathbb{R} \mid \cos x=0\}=\mathbb{R} \backslash\{\pi / 2+\pi k \mid k \in \mathbb{Z}\}$.

- $f(0)=1$ and $f(x)=\frac{\sin x}{x}$ for $x \neq 0$.

Since $\sin x$ and the identity function are continuous, it follows that $f$ is continuous on $\mathbb{R} \backslash\{0\}$. Further, we know from the previous lecture that $\frac{\sin x}{x} \rightarrow 1$ as $x \rightarrow 0$. Thus the function $f$ is continuous at 0 as well.

## Global properties of continuous functions

Theorem 1 If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: I \rightarrow \mathbb{R}$ is bounded on $I$, i.e., the image $f(I)$ is a bounded subset of $\mathbb{R}$.
Theorem 2 If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: I \rightarrow \mathbb{R}$ attains its extreme values (maximum and minimum) on $l$.
Theorem 3 If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous then any number $y_{0}$ that lies between $f(a)$ and $f(b)$ is a value of $f$, i.e., $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in[a, b]$.

## Extreme Value Theorem

Theorem If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: I \rightarrow \mathbb{R}$ attains its extreme values (maximum and minimum) on $l$. To be precise, there exist points $x_{\text {min }}, x_{\text {max }} \in I$ such that

$$
f\left(x_{\min }\right) \leq f(x) \leq f\left(x_{\max }\right) \text { for all } x \in I
$$

Remark 1. The theorem may not hold if the interval $I$ is not closed. Counterexample: $f(x)=x, x \in(0,1)$. Neither maximum nor minimum is attained.

Remark 2. The theorem may not hold if the interval $/$ is not bounded. Counterexample: $f(x)=1 /\left(1+x^{2}\right), x \in[0, \infty)$. The maximal value is attained at 0 but the minimal value is not attained.

