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Advanced Calculus I

Lecture 25:
More on continuous functions.

Points of discontinuity.



Continuity

Definition. Given a set E ⊂ R, a function f : E → R, and a
point c ∈ E , the function f is continuous at c if for any
ε > 0 there exists δ = δ(ε) > 0 such that |x − c| < δ and
x ∈ E imply |f (x)− f (c)| < ε.

We say that the function f is continuous on a set E0 ⊂ E if
f is continuous at every point c ∈ E0. The function f is
continuous if it is continuous on the entire domain E .

Theorem (sequential characterization of continuity)
A function f : E → R is continuous at a point c ∈ E if and
only if for any sequence {xn} of elements of E ,

xn → c as n → ∞ implies f (xn) → f (c) as n → ∞.



Continuity and compactness

Recall that a set E ⊂ R is called compact if it has the
Bolzano-Weierstrass property: any sequence of points from
E has a subsequence converging to some point in E .

Theorem A set E ⊂ R is compact if and only if it is closed
and bounded. E.g., intervals of the form [a, b] are compact.

Theorem Any continuous function maps compact sets to
compact sets.

Proof: Suppose f : E → R is a continuous function and
S ⊂ E is a compact subset of its domain. We need to show
that the image f (S) is compact as well. Let y1, y2, y3, . . . be
an arbitrary sequence of elements of f (S). For any n ∈ N we
have yn = f (xn), where xn ∈ S . Now x1, x2, x3, . . . is a
sequence of elements of S . Since S is compact, there is a
subsequence {xnk} converging to some c ∈ S . By continuity
of f , ynk = f (xnk ) → f (c), an element of f (S), as k → ∞.



Extreme Value Theorem

Theorem If E ⊂ R is a nonempty compact set, then any
continuous function f : E → R attains its extreme values
(maximum and minimum) on E .

Lemma If a nonempty set S ⊂ R is bounded, then sup S
and inf S are limit points of S .

Proof: We need to show that any ε-neighborhoods of the
points M = sup S and m = inf S contain elements of S .
Indeed, M is an upper bound for S while M − ε is not.
Likewise, m is a lower bound for S while m + ε is not. Hence
there is an element of S in (M − ε,M] and in [m,m + ε).

Proof of Theorem: Since E is compact and f is continuous,
the image f (E ) is a (nonempty) compact set. Hence f (E ) is
bounded and closed. By Lemma, M = sup f (E ) and
m = inf f (E ) are limit points of f (E ). Since f (E ) is closed,
it contains them. Thus M = max f (E ) and m = min f (E ).



Topological characterization of continuity

Proposition Suppose c is an interior point of a set E ⊂ R.
Then for any function f : E → R the following are equivalent:
(i) f is continuous at c; (ii) whenever f (c) is an interior
point of a set U ⊂ R, the point c is interior for f −1(U).

Idea of the proof: The condition |x − c| < δ =⇒
|f (x)− f (c)| < ε can be reformulated as
(c − δ, c + δ) ⊂ f −1(U), where U = (f (c)− ε, f (c) + ε).

Theorem Given a function f : R → R, the following are
equivalent: (i) f is continuous on R; (ii) for any open set
U ⊂ R the pre-image f −1(U) is also open; (iii) for any
closed set V ⊂ R the pre-image f −1(V ) is also closed.

Proof: Equivalence (i)⇐⇒(ii) follows from Proposition.
Equivalence (ii)⇐⇒(iii) follows since the complement of an
open set is closed, the complement of a closed set is open, and
f −1(R \ X ) = R \ f −1(X ) for any set X ⊂ R.



Intermediate Value Theorem

Theorem If a continuous function f : R → R

takes two different values, then it also takes all
values between them.

Proof: Suppose f (a) < f (b) for some a, b ∈ R and let s be
any number such that f (a) < s < f (b). We need to show
that f (c) = s for some c ∈ R. Since (−∞, s) and (s,∞)
are open sets and f is a continuous function, the sets
U− = f −1((−∞, s)) and U+ = f −1((s,∞)) are open as well.
Besides, they are disjoint. Therefore any point in U−

(including a) is an interior point of U− while any point in U+

(including b) is an exterior point of U−. As we know from an
earlier lecture, between any interior point and any exterior
point of the set U− there must be a boundary point c ∈ ∂U−.
It is easy to see that f (c) = s.



Intermediate Value Theorem

Corollary 1 If a continuous function f : I → R

defined on an interval I ⊂ R takes two different
values, then it also takes all values between them.

Proof: Suppose f (a) 6= f (b) for some a, b ∈ I , a < b, and
let s be any number between f (a) and f (b). We need to
show that f (c) = s for some c ∈ I . Consider a function
F : R → R defined by F (x) = f (x) if a ≤ x ≤ b,
F (x) = f (a) if x < a, and F (x) = f (b) if x > b. It is easy
to observe that F is continuous. By the theorem, F (c) = s

for some c ∈ R. Clearly, a < c < b so that
f (c) = F (c) = s.

Corollary 2 Any continuous function maps

intervals to intervals.



Points of discontinuity

A function f : E → R is discontinuous at a point c ∈ E if
it is not continuous at c. There are various kinds of
discontinuities including the following ones.

• The function f has a removable discontinuity at a point
c if the limit at c exists, but it is different from the value at c:
lim
x→c

f (x) 6= f (c).

• The function f has a jump discontinuity at a point c if
both one-sided limits at c exist, but they are not equal:
lim

x→c−

f (x) 6= lim
x→c+

f (x).

• Any other discontinuity of f is called essential.

• An example of an essential discontinuity is a point c ∈ E

at which the function f is not locally bounded, that is, f is
not bounded on (c − δ, c + δ) ∩ E for any δ > 0.



Half-continuity

Definition. Given a set E ⊂ R, a function f : E → R, and a
point c ∈ E , the function f is continuous c if for any ε > 0
there exists δ = δ(ε) > 0 such that |x − c| < δ and x ∈ E

imply |f (x)− f (c)| < ε.

The function f is right-continuous at c if for any ε > 0
there exists δ = δ(ε) > 0 such that c ≤ x < c + δ and
x ∈ E imply |f (x)− f (c)| < ε.

The function f is left-continuous at c if for any ε > 0 there
exists δ = δ(ε) > 0 such that c − δ < x ≤ c and x ∈ E

imply |f (x)− f (c)| < ε.

The function f is upper semi-continuous at c if for any
ε > 0 there exists δ = δ(ε) > 0 such that |x − c| < δ and
x ∈ E imply f (x)− f (c) < ε.

The function f is lower semi-continuous at c if for any
ε > 0 there exists δ = δ(ε) > 0 such that |x − c| < δ and
x ∈ E imply f (x)− f (c) > −ε.



Examples

• Step function: f (x) =

{

1 if x > 0,
0 if x ≤ 0.

Since lim
x→0−

f (x) = 0 and lim
x→0+

f (x) = 1, the function has a

jump discontinuity at 0. It is continuous on R \ {0}. Also, it
is left-continuous and lower semi-continuous on R.

• Integer part: f (x) = ⌊x⌋, x ∈ R.

For every integer n ∈ Z, we have f (x) = n if n ≤ x < n + 1.
It follows that lim

x→n−

f (x) = n − 1 and lim
x→n+

f (x) = n. Hence

the function has a jump discontinuity at each integer. It is
continuous on R \ Z. Also, it is right-continuous and upper
semi-continuous on R.



Examples

• f (0) = 0 and f (x) =
1

x
for x 6= 0.

The function is discontinuous at 0 as it is not locally bounded
at 0. It is continuous on R \ {0}.

• f (0) = 0 and f (x) = sin
1

x
for x 6= 0.

Since lim
x→0+

f (x) does not exist, the function is discontinuous

at 0. Notice that it is an essential discontinuity, and the
function f is bounded. The function f is continuous on
R \ {0}. Redefining f at 0 so that f (0) ≥ 1, we will make the
function upper semi-continuous on R. Redefining f at 0 so
that f (0) ≤ −1, we will make it lower semi-continuous on R.



Examples

• Dirichlet function: f (x) =

{

1 if x ∈ Q,

0 if x ∈ R \Q.

Since lim
x→c

f (x) never exists, the function has no points of

continuity. It is upper semi-continuous at rational points and
lower semi-continuous at irrational points.

• Riemann function:

f (x) =

{

1/q if x = p/q, a reduced fraction,

0 if x ∈ R \Q.

Since lim
x→c

f (x) = 0 for all c ∈ R, the function f is

continuous at irrational points and discontinuous at rational
points. Moreover, all discontinuities are removable. Also,
f is upper semi-continuous on R.


