MATH 409
Advanced Calculus |
Lecture 25:

More on continuous functions.
Points of discontinuity.



Continuity

Definition. Given a set E C R, a function f: E — R, and a
point ¢ € E, the function f is continuous at c if for any

e > 0 there exists 6 = d(¢) > 0 such that |[x —c| < J and
x € E imply |[f(x) —f(c)|] <e.

We say that the function f is continuous on a set Ey C E if
f is continuous at every point ¢ € Ey. The function f is
continuous if it is continuous on the entire domain E.

Theorem (sequential characterization of continuity)
A function f : E — R is continuous at a point ¢ € E if and
only if for any sequence {x,} of elements of E,

X, — ¢ as n — oo implies f(x,) — f(c) as n — cc.



Continuity and compactness

Recall that a set E C R is called compact if it has the
Bolzano-Weierstrass property: any sequence of points from
E has a subsequence converging to some point in E.

Theorem A set £ C R is compact if and only if it is closed
and bounded. E.g., intervals of the form [a, b] are compact.

Theorem Any continuous function maps compact sets to
compact sets.

Proof: Suppose f : E — R is a continuous function and

S C E is a compact subset of its domain. We need to show
that the image f(S) is compact as well. Let yi,y2,y3,... be
an arbitrary sequence of elements of f(S). For any n€ N we
have y, = f(x,), where x, € S. Now x1,%p,X3,... isa
sequence of elements of S. Since S is compact, there is a
subsequence {x,, } converging to some ¢ € S. By continuity
of £, yn, = f(xn,) — f(c), an element of f(S), as k — oo.



Extreme Value Theorem

Theorem If E C R is a nonempty compact set, then any
continuous function f : E — R attains its extreme values
(maximum and minimum) on E.

Lemma If a nonempty set S C R is bounded, then sup S
and inf S are limit points of S.

Proof: We need to show that any e-neighborhoods of the
points M =supS and m = infS contain elements of S.
Indeed, M is an upper bound for S while M — ¢ is not.
Likewise, m is a lower bound for S while m+ ¢ is not. Hence
there is an element of S in (M —¢, M] and in [m, m+ ¢).

Proof of Theorem: Since E is compact and f is continuous,

the image f(E) is a (nonempty) compact set. Hence f(E) is
bounded and closed. By Lemma, M = sup f(E) and

m = inf f(E) are limit points of f(E). Since f(E) is closed,
it contains them. Thus M = maxf(E) and m = min f(E).



Topological characterization of continuity

Proposition Suppose c is an interior point of a set £ C R.
Then for any function f : E — R the following are equivalent:
(i) f is continuous at ¢; (ii) whenever f(c) is an interior
point of a set U C R, the point c is interior for f=1(U).

Idea of the proof: The condition |x —¢c| <§ =
|f(x) — f(c)| < e can be reformulated as
(c—d,c+0) C FU), where U= (f(c) —¢,f(c)+e).

Theorem Given a function f : R — R, the following are
equivalent: (i) f is continuous on R; (ii) for any open set
U C R the pre-image (V) is also open; (iii) for any
closed set V C R the pre-image f~!(V) is also closed.

Proof: Equivalence (i)<=>(ii) follows from Proposition.
Equivalence (ii)<=(iii) follows since the complement of an
open set is closed, the complement of a closed set is open, and
FARN\X) =R\ f}(X) for any set X C R.



Intermediate Value Theorem

Theorem If a continuous function f: R — R
takes two different values, then it also takes all
values between them.

Proof: Suppose f(a) < f(b) for some a,b € R and let s be
any number such that f(a) < s < f(b). We need to show
that f(c) = s for some ¢ € R. Since (—o0,s) and (s,o0)
are open sets and f is a continuous function, the sets
U_=f"1(—o0,s)) and U; = f~1((s,00)) are open as well.
Besides, they are disjoint. Therefore any point in U_
(including a) is an interior point of U_ while any point in U,
(including b) is an exterior point of U_. As we know from an
earlier lecture, between any interior point and any exterior
point of the set U_ there must be a boundary point ¢ € JU_.
It is easy to see that f(c) =s.



Intermediate Value Theorem

Corollary 1 If a continuous function f:/ — R
defined on an interval /| C R takes two different
values, then it also takes all values between them.

Proof: Suppose f(a) # f(b) for some a,b€ [, a < b, and
let s be any number between f(a) and f(b). We need to
show that f(c) = s for some c € [. Consider a function

F:R — R defined by F(x) = f(x) if a<x < b,
F(x)=f(a) if x <a, and F(x) = f(b) if x> b. Itis easy
to observe that F is continuous. By the theorem, F(c) =s

for some c € R. Clearly, a < ¢ < b so that
f(c)=F(c)=s.

Corollary 2 Any continuous function maps
intervals to intervals.



Points of discontinuity

A function f : E — R is discontinuous at a point c € E if
it is not continuous at ¢. There are various kinds of
discontinuities including the following ones.

e The function f has a removable discontinuity at a point
c if the limit at ¢ exists, but it is different from the value at c¢:

)I(ian f(x) # f(c).

e The function f has a jump discontinuity at a point c if
both one-sided limits at ¢ exist, but they are not equal:

lim f(x)# lim f(x).
X—C— X—Cc+
e Any other discontinuity of f is called essential.

e An example of an essential discontinuity is a point ¢ € E
at which the function f is not locally bounded, that is, f is
not bounded on (¢ —d,c+ ) N E for any § > 0.



Half-continuity

Definition. Given a set E C R, a function f : E - R, and a
point ¢ € E, the function f is continuous c if for any ¢ > 0
there exists § = d(¢) > 0 such that |x —c| <J and x € E
imply |f(x) —f(c)| <e.

The function f is right-continuous at c if for any ¢ > 0
there exists § = d(¢) > 0 such that ¢ < x < c+J and

x € E imply |f(x) = f(c)|] <e.

The function f is left-continuous at c if for any € > 0 there
exists 0 = d(¢) > 0 such that c—d <x<c and x€ E
imply |f(x) —f(c)| <e.

The function f is upper semi-continuous at c if for any

e > 0 there exists § = d(¢) > 0 such that |x —c| < J and
x € E imply f(x)—f(c) <e.

The function f is lower semi-continuous at c if for any

e > 0 there exists § = d(¢) > 0 such that |x —c| < J and
x € E imply f(x)— f(c) > —e¢.



Examples

1 if x>0,

e Step function: f(X) = {O if x <O0.

Since lim f(x) =0 and lim f(x) =1, the function has a
x—0— x—0+

jump discontinuity at 0. It is continuous on R\ {0}. Also, it
is left-continuous and lower semi-continuous on R.

e Integer part: f(x) = |x]|, x € R.

For every integer n € Z, we have f(x)=n if n<x<n+1

It follows that lim f(x) =n—1 and lim f(x)=n. Hence
X—n— X—rn+

the function has a jump discontinuity at each integer. It is
continuous on R\ Z. Also, it is right-continuous and upper
semi-continuous on R.



Examples

1
e f(0)=0 and f(x):; for x # 0.

The function is discontinuous at 0 as it is not locally bounded
at 0. It is continuous on R\ {0}.

1
e f(0)=0 and f(x)=sin— for x #0.
X

Since (x) does not exist, the function is discontinuous

Xl—lg)]—i- f
at 0. Notice that it is an essential discontinuity, and the
function f is bounded. The function f is continuous on

R\ {0}. Redefining f at 0 so that f(0) > 1, we will make the
function upper semi-continuous on R. Redefining f at 0 so

that f(0) < —1, we will make it lower semi-continuous on R.



Examples

1 if xe@Q

e Dirichlet function: f(x) = : ’
(x) { 0 if xeR\Q.
Since lim f(x) never exists, the function has no points of

X—C
continuity. It is upper semi-continuous at rational points and

lower semi-continuous at irrational points.

e Riemann function:

F(x) = 1/q if x=p/q, a reduced fraction,
T 0 if xeR\Q.

Since lim f(x) =0 for all c € R, the function f is

X—C
continuous at irrational points and discontinuous at rational

points. Moreover, all discontinuities are removable. Also,
f is upper semi-continuous on R.



