MATH 409
 Advanced Calculus I

Lecture 26:
 Monotonic functions.
 Exponential function.
 Uniform continuity.

Monotonic functions

Let $f: E \rightarrow \mathbb{R}$ be a function defined on a set $E \subset \mathbb{R}$.
Definition. The function f is called nondecreasing if, for any $x, y \in E, x<y$ implies $f(x) \leq f(y)$. It is called (strictly) increasing if $x<y$ implies $f(x)<f(y)$. Likewise, f is nonincreasing if $x<y$ implies $f(x) \geq f(y)$ and (strictly) decreasing $x<y$ implies $f(x)>f(y)$ for all $x, y \in E$. Nondecreasing and nonincreasing functions are called monotonic. Increasing and decreasing functions are called strictly monotonic.

Theorem 1 Any one-sided limit of a monotonic function exists (assuming it makes sense).
Theorem 2 Any monotonic function can have only jump (or removable) discontinuities.
Theorem 3 A monotonic function f defined on an interval I is continuous if and only if the image $f(I)$ is also an interval.

Continuity of the inverse function

Suppose $f: E \rightarrow \mathbb{R}$ is a strictly monotonic function defined on a set $E \subset \mathbb{R}$. Then f is one-to-one on E so that the inverse function f^{-1} is a well defined function on $f(E)$.

Theorem If the domain E of a strictly monotonic function f is an interval and f is continuous on E, then the image $f(E)$ is also an interval, and the inverse function f^{-1} is strictly monotonic and continuous on $f(E)$.
Proof: Since continuous functions map intervals onto intervals, the set $f(E)$ is an interval. The inverse function f^{-1} is strictly monotonic since f is strictly monotonic. By construction, f^{-1} maps the interval $f(E)$ onto the interval E, which implies that f^{-1} is continuous.

Examples

- Power function $f(x)=x^{n}, x \in \mathbb{R}$, where $n \in \mathbb{N}$.
The function f is continuous on \mathbb{R}. It is strictly increasing on the interval $[0, \infty)$ and $f([0, \infty))=[0, \infty)$. In the case n is odd, the function f is strictly increasing on \mathbb{R} and $f(\mathbb{R})=\mathbb{R}$. We conclude that the inverse function $f^{-1}(x)=\sqrt[n]{x}$ is a well defined, continuous function on $[0, \infty)$ if n is even and on \mathbb{R} if n is odd.
- $f(x)=\sin x, x \in \mathbb{R}$.

The function f is continuous on \mathbb{R}. It is strictly increasing on the interval $[-\pi / 2, \pi / 2]$ and maps this interval onto $[-1,1]$. Therefore the inverse function $f^{-1}(x)=\arcsin x$ is a well defined, continuous function on $[-1,1]$.

Exponential function

First we define a^{n} for all $a \in \mathbb{R}$ and $n \in \mathbb{N}$ by induction on $n: a^{1}=a$ and $a^{n+1}=a^{n} a$ for all $n \in \mathbb{N}$.

Lemma $1 a^{m+n}=a^{m} a^{n}$ and $a^{m n}=\left(a^{m}\right)^{n}$ for all $a \in \mathbb{R}$ and $m, n \in \mathbb{N}$.

In the case $a \neq 0$, we also let $a^{0}=1$ and $a^{-n}=1 / a^{n}$ for all $n \in \mathbb{N}$.

Lemma $2 a^{m-n}=a^{m} / a^{n}$ for all $a \neq 0$ and integers $m, n \geq 0$.

Lemma $3 a^{m+n}=a^{m} a^{n}$ and $a^{m n}=\left(a^{m}\right)^{n}$ for all $a \neq 0$ and $m, n \in \mathbb{Z}$.

Exponential function

Lemma 4 If $m_{1}, m_{2} \in \mathbb{Z}$ and $n_{1}, n_{2} \in \mathbb{N}$ satisfy $m_{1} / n_{1}=m_{2} / n_{2}$, then $\sqrt[n_{1}]{a^{m_{1}}}=\sqrt[n_{2}]{a^{m_{2}}}$ for all $a>0$.

Now for any $a>0$ and $r \in \mathbb{Q}$ we let $a^{r}=\sqrt[n]{a^{m}}$, where $m \in \mathbb{Z}$ and $n \in \mathbb{N}$ are chosen so that $r=m / n$. This is well-defined due to Lemma 4.
Lemma $5 a^{r+s}=a^{r} a^{s}$ and $a^{r s}=\left(a^{r}\right)^{s}$ for all $a>0$ and $r, s \in \mathbb{Q}$.

Lemma 6 Suppose $a>1$ and $r \in \mathbb{Q}$. Then $a^{r}>1$ if $r>0,0<a^{r}<1$ if $r<0$, and $a^{r}=1$ if $r=0$.

Exponential function

Given $a>0$, consider a function $f_{a}: \mathbb{Q} \rightarrow \mathbb{R}$ defined by $f_{a}(r)=a^{r}, r \in \mathbb{Q}$.

Lemma 7 The function f_{a} is strictly increasing if $a>1$, strictly decreasing if $0<a<1$, and constant if $a=1$. Idea of the proof: $a^{r}-a^{s}=a^{s}\left(a^{r-s}-1\right)$.

Lemma $8 \sqrt[n]{a} \rightarrow 1$ as $n \rightarrow \infty$.
Lemma $9 \lim _{r \rightarrow c} f_{a}(r)$ exists for any $c \in \mathbb{R}$.
Proof: By Lemma 7, f_{a} is monotonic. Hence both one-sided limits $L_{+}=\lim _{r \rightarrow c+} f_{a}(r)$ and $L_{-}=\lim _{r \rightarrow c-} f_{a}(r)$ exist. We need to show that $L_{+}=L_{-}$. Let us choose a sequence $\left\{r_{n}\right\}$ of rational numbers such that $c-1 / n<r_{n}<c$ for each $n \in \mathbb{N}$.
Further, let $s_{n}=r_{n}+1 / n, n \in \mathbb{N}$. Then $c<s_{n}<c+1 / n$. It follows that $a^{r_{n}} \rightarrow L_{-}$and $a^{s_{n}} \rightarrow L_{+}$as $n \rightarrow \infty$. Since $a^{s_{n}}=a^{r_{n}} a^{1 / n}$, Lemma 8 implies that $L_{+}=L_{-}$.

Exponential function

Given $a>0$, for any irrational $x \in \mathbb{R} \backslash \mathbb{Q}$ we let $a^{x}=\lim _{\substack{r \rightarrow x \\ r \in \mathbb{Q}}} a^{r}$.
This is well-defined due to Lemma 9.
Now we have a function $F_{a}: \mathbb{R} \rightarrow \mathbb{R}$ defined by $F_{a}(x)=a^{x}$, $x \in \mathbb{R}$, namely, the exponential function with base a.

Theorem (i) The function F_{a} is strictly increasing if $a>1$, strictly decreasing if $0<a<1$, and constant if $a=1$.
(ii) The function F_{a} is continuous on \mathbb{R}.
(iii) $a^{x+y}=a^{x} a^{y}$ for all $x, y \in \mathbb{R}$.

Idea of the proof: Part (i) follows from Lemma 7. Part (ii) follows from Lemma 9 and monotonicity of F_{a}. Part (iii) follows from Lemma 5 and continuity of F_{a}.

Corollary If $a \neq 1$ then the function F_{a} is strictly monotonic and maps \mathbb{R} onto the interval $(0, \infty)$. The inverse function $F_{a}^{-1}(x)=\log _{a} x$ is well-defined and continuous on $(0, \infty)$.

Uniform continuity

Definition. A function $f: E \rightarrow \mathbb{R}$ defined on a set $E \subset \mathbb{R}$ is called uniformly continuous on E if for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)>0$ such that $|x-y|<\delta$ and $x, y \in E$ imply $|f(x)-f(y)|<\varepsilon$.

Recall that the function f is continuous at a point $y \in E$ if for every $\varepsilon>0$ there exists $\delta=\delta(y, \varepsilon)>0$ such that $|x-y|<\delta$ and $x \in E$ imply $|f(x)-f(y)|<\varepsilon$.

Therefore the uniform continuity of f is a stronger property than the continuity of f on E.

Examples

- Constant function $f(x)=a$ is uniformly continuous on \mathbb{R}. Indeed, $|f(x)-f(y)|=0<\varepsilon$ for any $\varepsilon>0$ and $x, y \in \mathbb{R}$.
- Identity function $f(x)=x$ is uniformly continuous on \mathbb{R}.
Since $f(x)-f(y)=x-y$, we have $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\varepsilon$.
- The sine function $f(x)=\sin x$ is uniformly continuous on \mathbb{R}.

It was shown in an earlier lecture that $|\sin x-\sin y| \leq|x-y|$ for all $x, y \in \mathbb{R}$. Therefore $|f(x)-f(y)|<\varepsilon$ whenever $|x-y|<\varepsilon$.

Lipschitz functions

Definition. A function $f: E \rightarrow \mathbb{R}$ is called a Lipschitz function if there exists a constant $L>0$ such that $|f(x)-f(y)| \leq L|x-y|$ for all $x, y \in E$.

- Any Lipschitz function is uniformly continuous.

Using notation of the definition, let $\delta(\varepsilon)=\varepsilon / L, \varepsilon>0$. Then $|x-y|<\delta(\varepsilon)$ implies

$$
|f(x)-f(y)| \leq L|x-y|<L \delta(\varepsilon)=\varepsilon
$$

for all $x, y \in E$.

- The function $f(x)=\sqrt{x}$ is uniformly continuous on $[0, \infty)$ but not Lipschitz.

For any $n \in \mathbb{N},|f(1 / n)-f(0)|=\sqrt{1 / n}=\sqrt{n}|1 / n-0|$. It follows that f is not Lipschitz.
Given $\varepsilon>0$, let $\delta=\varepsilon^{2}$. Suppose $|x-y|<\delta$, where $x, y \geq 0$. To estimate $|f(x)-f(y)|$, we consider two cases. In the case $x, y \in[0, \delta)$, we use the fact that f is strictly increasing. Then $|f(x)-f(y)|<f(\delta)-f(0)=\sqrt{\delta}=\varepsilon$.
Otherwise, when $x \notin[0, \delta)$ or $y \notin[0, \delta)$, we have $\max (x, y) \geq \delta$. Then

$$
|\sqrt{x}-\sqrt{y}|=\left|\frac{x-y}{\sqrt{x}+\sqrt{y}}\right| \leq \frac{|x-y|}{\sqrt{\max (x, y)}}<\frac{\delta}{\sqrt{\delta}}=\sqrt{\delta}=\varepsilon .
$$

Thus f is uniformly continuous.

- The function $f(x)=x^{2}$ is not uniformly continuous on \mathbb{R}.

Let $\varepsilon=2$ and choose an arbitrary $\delta>0$. Let n_{δ} be a natural number such that $1 / n_{\delta}<\delta$. Further, let $x_{\delta}=n_{\delta}+1 / n_{\delta}$ and $y_{\delta}=n_{\delta}$. Then $\left|x_{\delta}-y_{\delta}\right|=1 / n_{\delta}<\delta$ while

$$
f\left(x_{\delta}\right)-f\left(y_{\delta}\right)=\left(n_{\delta}+1 / n_{\delta}\right)^{2}-n_{\delta}^{2}=2+1 / n_{\delta}^{2}>\varepsilon .
$$

We conclude that f is not uniformly continuous.

- The function $f(x)=x^{2}$ is Lipschitz (and hence uniformly continuous) on any bounded interval
$[a, b]$.
For any $x, y \in[a, b]$ we obtain

$$
\begin{aligned}
\left|x^{2}-y^{2}\right| & =|(x+y)(x-y)|=|x+y||x-y| \\
& \leq(|x|+|y|)|x-y| \leq 2 \max (|a|,|b|)|x-y| .
\end{aligned}
$$

Theorem Any function continuous on a compact set E (e.g., $E=[a, b]$) is also uniformly continuous on E.

Proof: Assume that a function $f: E \rightarrow \mathbb{R}$ is not uniformly continuous on E. We have to show that f is not continuous on E. By assumption, there exists $\varepsilon>0$ such that for any $\delta>0$ we can find two points $x, y \in E$ satisfying $|x-y|<\delta$ and $|f(x)-f(y)| \geq \varepsilon$. In particular, for any $n \in \mathbb{N}$ there exist points $x_{n}, y_{n} \in E$ such that $\left|x_{n}-y_{n}\right|<1 / n$ while $\left|f\left(x_{n}\right)-f\left(y_{n}\right)\right| \geq \varepsilon$.
Now $\left\{x_{n}\right\}$ is a sequence of elements of the compact set E. Hence there is a subsequence $\left\{x_{n_{k}}\right\}$ converging to a limit $c \in E$. Since $x_{n}-1 / n<y_{n}<x_{n}+1 / n$ for all $n \in \mathbb{N}$, the subsequence $\left\{y_{n_{k}}\right\}$ also converges to c. However the inequalities $\left|f\left(x_{n_{k}}\right)-f\left(y_{n_{k}}\right)\right| \geq \varepsilon$ imply that at least one of the sequences $\left\{f\left(x_{n_{k}}\right)\right\}$ and $\left\{f\left(y_{n_{k}}\right)\right\}$ is not converging to $f(c)$. It follows that the function f is not continuous at c.

Theorem Suppose that a function $f: E \rightarrow \mathbb{R}$ is uniformly continuous on E. Then it maps Cauchy sequences to Cauchy sequences, that is, for any Cauchy sequence $\left\{x_{n}\right\} \subset E$ the sequence $\left\{f\left(x_{n}\right)\right\}$ is also Cauchy.

Proof: Let $\left\{x_{n}\right\} \subset E$ be a Cauchy sequence. Since the function f is uniformly continuous on E, for every $\varepsilon>0$ there exists $\delta=\delta(\varepsilon)$ such that $|x-y|<\delta$ and $x, y \in E$ imply $|f(x)-f(y)|<\varepsilon$. Since $\left\{x_{n}\right\}$ is a Cauchy sequence, there exists $N=N(\delta) \in \mathbb{N}$ such that $\left|x_{n}-x_{m}\right|<\delta$ for all $n, m \geq N$. Then $\left|f\left(x_{n}\right)-f\left(x_{m}\right)\right|<\varepsilon$ for all $n, m \geq N$.
We conclude that $\left\{f\left(x_{n}\right)\right\}$ is a Cauchy sequence.

Continuous extension

Theorem Suppose that a function $f: E \rightarrow \mathbb{R}$ is uniformly continuous. Then it can be extended to a continuous function on the closure \bar{E}. Moreover, the extension is unique and uniformly continuous.

Example. Let $a>0$. Then the function $f_{a}: \mathbb{Q} \rightarrow \mathbb{R}$ defined by $f_{a}(r)=a^{r}$ is uniformly continuous on $\left[b_{1}, b_{2}\right] \cap \mathbb{Q}$ for any bounded interval [b_{1}, b_{2}]. Hence it is uniquely extended to a continuous function on \mathbb{R}.

