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Lecture 26:
Monotonic functions.
Exponential function.

Uniform continuity.



Monotonic functions

Let f: E — R be a function defined on a set E C R.

Definition. The function f is called nondecreasing if, for any
x,y € E, x <y implies f(x) < f(y). Itis called (strictly)
increasing if x <y implies f(x) < f(y). Likewise, f is
nonincreasing if x <y implies f(x) > f(y) and (strictly)
decreasing x < y implies f(x) > f(y) for all x,y € E.
Nondecreasing and nonincreasing functions are called
monotonic. Increasing and decreasing functions are called
strictly monotonic.

Theorem 1 Any one-sided limit of a monotonic function
exists (assuming it makes sense).

Theorem 2 Any monotonic function can have only jump
(or removable) discontinuities.

Theorem 3 A monotonic function f defined on an interval /
is continuous if and only if the image (/) is also an interval.



Continuity of the inverse function

Suppose f : E — R is a strictly monotonic function defined
onaset ECR. Then f is one-to-one on E so that the
inverse function 7! is a well defined function on f(E).

Theorem If the domain E of a strictly monotonic function f
is an interval and f is continuous on E, then the image f(E) is
also an interval, and the inverse function f~1 is strictly
monotonic and continuous on f(E).

Proof: Since continuous functions map intervals onto
intervals, the set f(E) is an interval. The inverse function f~1
is strictly monotonic since f is strictly monotonic. By
construction, f~* maps the interval f(E) onto the interval E,
which implies that f~1 is continuous.



Examples

e Power function f(x) = x", x € R, where
n € N.

The function f is continuous on R. It is strictly increasing on
the interval [0,00) and ([0, 00)) = [0,00). In the case nis
odd, the function f is strictly increasing on R and f(R) = R.
We conclude that the inverse function f~1(x) = /x is a well
defined, continuous function on [0, 00) if nis even and on R
if nis odd.

e f(x)=sinx, x € R.

The function f is continuous on R. It is strictly increasing on
the interval [—7/2,7/2] and maps this interval onto [—1,1].
Therefore the inverse function f~!(x) = arcsin x is a well
defined, continuous function on [—1,1].



Exponential function

First we define a” for all a € R and n € N by
induction on n: a = a and a"t! = a"a for all

n € N.

Lemma 1 a™"" = 3"3" and a™" = (a")" for all
aceR and m,neN.

In the case a # 0, we also let a®=1 and
a"=1/a" forall n€ N,

Lemma 2 a™ " =2a"/a" forall a# 0 and

integers m,n > 0.

Lemma 3 27" = a"a" and a™" = (a™)" for all
a#0 and m,neZ.



Exponential function

Lemma 4 If m;,my € Z and ny, n, € N satisfy

my/ny = my/ny, then ¥am™ = %/am™ for all

a>0.

Now for any a> 0 and r € Q we let a" = v/a™,
where m € 7Z and n € N are chosen so that
r = m/n. This is well-defined due to Lemma 4.

Lemma 5 a2’ = 3a"a° and a” = (a")° for all
a>0and r,s €Q.

Lemma 6 Suppose a>1 and r € Q. Then
aa>1ifr>0 0<a <1ifr<0,and a" =1
if r=20.



Exponential function

Given a > 0, consider a function f; : QQ — R defined by
f(r)=a", reqQ.

Lemma 7 The function f, is strictly increasing if a > 1,
strictly decreasing if 0 < a < 1, and constant if a = 1.

Idea of the proof: a" —a° = a*(a"* — 1).
Lemma 8 /a—1 as n— co.

Lemma 9 lim f5(r) exists for any ¢ € R.
r—c

Proof: By Lemma 7, £, is monotonic. Hence both one-sided

limits L, = “m+ f.(r) and L_ = lim f,(r) exist. We need
r—c r—c—

to show that L, = L_. Let us choose a sequence {r,} of
rational numbers such that ¢ —1/n < r, < ¢ for each n € N.
Further, let s, =r,+1/n, n€N. Then c<s,<c+1/n.
It follows that a™ — L_ and a* — L, as n — oo. Since
a™ = a™a'/", Lemma 8 implies that L, = L_.



Exponential function

Given a > 0, for any irrational x € R\ Q we let a* = lim a".
r—x

This is well-defined due to Lemma 9. reQ

Now we have a function F,: R — R defined by F,(x) = a*,
x € R, namely, the exponential function with base a.

Theorem (i) The function F, is strictly increasing if a > 1,
strictly decreasing if 0 < a < 1, and constant if a = 1.

(ii) The function F, is continuous on R.

(iii) 2T = a¥a” for all x,y € R.

Idea of the proof: Part (i) follows from Lemma 7. Part (ii)
follows from Lemma 9 and monotonicity of F,. Part (iii)
follows from Lemma 5 and continuity of F,.

Corollary If a # 1 then the function F, is strictly monotonic
and maps R onto the interval (0,00). The inverse function

F;1(x) = log, x is well-defined and continuous on (0, cc).



Uniform continuity

Definition. A function f : E — R defined on a set
E C R is called uniformly continuous on E if for
every € > 0 there exists § = d(¢) > 0 such that

Ix —y| <6 and x,y € E imply |f(x) —f(y)| <e.

Recall that the function f is continuous at a point
y € E if for every € > 0 there exists
d =9d(y,e) > 0 such that |x —y| <9 and x € E

imply |f(x) — f(y)| <e.

Therefore the uniform continuity of f is a stronger
property than the continuity of f on E.



Examples

e Constant function f(x) = a is uniformly
continuous on R.

Indeed, |f(x) — f(y)|=0<c¢e forany ¢ >0 and x,y € R.

e Identity function f(x) = x is uniformly
continuous on R.

Since f(x) — f(y) =x —y, we have |f(x) —f(y)| <e
whenever |x —y| < e.

e The sine function f(x) = sinx is uniformly
continuous on R.

It was shown in an earlier lecture that [sinx —siny| < |x — y|
for all x,y € R. Therefore |f(x) — f(y)| <& whenever
Ix —y| <e.



Lipschitz functions

Definition. A function f : E — R is called a
Lipschitz function if there exists a constant L > 0
such that |f(x) — f(y)| < L|x —y| forall x,y € E.

e Any Lipschitz function is uniformly continuous.

Using notation of the definition, let 6(¢) =¢/L, ¢ > 0.
Then |x —y| < d(e) implies
[F() = f)l < Lix—y[ < Li(e) = €

for all x,y € E.



e The function f(x) = /x is uniformly
continuous on [0,00) but not Lipschitz.

Forany n€ N, |f(1/n) — f(0)| = \/1/n=+/n|1/n—0|.

It follows that f is not L|psch|tz

Given € >0, let 6 = 2. Suppose |x — y| < 4, where

x,y > 0. To estimate |f(x)— f(y)|, we consider two cases.
In the case x,y € [0,6), we use the fact that f is strictly
increasing.  Then |f(x) — f(y)| < f(6) — f(0) = V6 = ¢.
Otherwise, when x ¢ [0,60) or y ¢ [0,0), we have
max(x, y) > 6. Then

Vx =yl =

x =yl ﬁz\/g:a

‘f+f‘ Jmadxy) Vs

Thus f is uniformly continuous.



e The function f(x) = x? is not uniformly
continuous on R.

Let € =2 and choose an arbitrary 6 > 0. Let ns be a natural
number such that 1/ns < §. Further, let xs = ns +1/ns; and
ys = ns. Then |xs — ys| = 1/ns < § while

f(X(;) — f(y(;) = (n5+ 1/!75)2 — n§ =2+ 1/n§ > €.

We conclude that f is not uniformly continuous.

e The function f(x) = x? is Lipschitz (and hence
uniformly continuous) on any bounded interval
[a, b].
For any x,y € [a, b] we obtain
X =y =1(x +y)(x=y)l =[x+ ylIx =y
< (X[ +IyD) Ix =y < 2max(]a], [b]) [x — y|.



Theorem Any function continuous on a compact set £
(e.g., E =|a, b)) is also uniformly continuous on E.

Proof: Assume that a function f : E — R is not uniformly
continuous on E. We have to show that f is not continuous
on E. By assumption, there exists € > 0 such that for any
d > 0 we can find two points x,y € E satisfying |[x —y| < §
and |f(x) — f(y)| > e. In particular, for any n € N there
exist points x,,y, € E such that |x, — y,| < 1/n while

£ (xa) = f(yn)| = €.

Now {x,} is a sequence of elements of the compact set E.
Hence there is a subsequence {x,, } converging to a limit
c€E. Since x,—1/n<y,<x,+1/n forall n€N, the
subsequence {y,, } also converges to c. However the
inequalities |f(x,,) — f(yn,)| > € imply that at least one of
the sequences {f(x,,)} and {f(y,,)} is not converging to
f(c). It follows that the function f is not continuous at c.



Theorem Suppose that a function f: E — R is
uniformly continuous on E. Then it maps Cauchy
sequences to Cauchy sequences, that is, for any
Cauchy sequence {x,} C E the sequence {f(x,)} is
also Cauchy.

Proof: Let {x,} C E be a Cauchy sequence. Since the
function f is uniformly continuous on E, for every ¢ > 0 there
exists 0 = d(¢) such that [x —y| < d and x,y € E imply
|f(x) — f(y)| <e. Since {x,} is a Cauchy sequence, there
exists N = N(0) € N such that |x, — x| < J for all

n,m> N. Then |f(x,) — f(xn)| <& forall n,m>N.

We conclude that {f(x,)} is a Cauchy sequence.



Continuous extension

Theorem Suppose that a function f: E — R is
uniformly continuous. Then it can be extended to a
continuous function on the closure E. Moreover,
the extension is unique and uniformly continuous.

Example. Let a > 0. Then the function

f,: Q@ — R defined by f,(r) = a" is uniformly
continuous on [by, by] N Q for any bounded interval
[b1, bo]. Hence it is uniquely extended to a
continuous function on R.



