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Advanced Calculus I

Lecture 26:

Monotonic functions.
Exponential function.
Uniform continuity.



Monotonic functions

Let f : E → R be a function defined on a set E ⊂ R.

Definition. The function f is called nondecreasing if, for any
x , y ∈ E , x < y implies f (x) ≤ f (y ). It is called (strictly)
increasing if x < y implies f (x) < f (y ). Likewise, f is
nonincreasing if x < y implies f (x) ≥ f (y ) and (strictly)
decreasing x < y implies f (x) > f (y ) for all x , y ∈ E .

Nondecreasing and nonincreasing functions are called
monotonic. Increasing and decreasing functions are called
strictly monotonic.

Theorem 1 Any one-sided limit of a monotonic function
exists (assuming it makes sense).

Theorem 2 Any monotonic function can have only jump
(or removable) discontinuities.

Theorem 3 A monotonic function f defined on an interval I
is continuous if and only if the image f (I ) is also an interval.



Continuity of the inverse function

Suppose f : E → R is a strictly monotonic function defined
on a set E ⊂ R. Then f is one-to-one on E so that the
inverse function f −1 is a well defined function on f (E ).

Theorem If the domain E of a strictly monotonic function f

is an interval and f is continuous on E , then the image f (E ) is
also an interval, and the inverse function f −1 is strictly
monotonic and continuous on f (E ).

Proof: Since continuous functions map intervals onto
intervals, the set f (E ) is an interval. The inverse function f −1

is strictly monotonic since f is strictly monotonic. By
construction, f −1 maps the interval f (E ) onto the interval E ,
which implies that f −1 is continuous.



Examples

• Power function f (x) = xn, x ∈ R, where
n ∈ N.

The function f is continuous on R. It is strictly increasing on
the interval [0,∞) and f ([0,∞)) = [0,∞). In the case n is
odd, the function f is strictly increasing on R and f (R) = R.
We conclude that the inverse function f −1(x) = n

√
x is a well

defined, continuous function on [0,∞) if n is even and on R

if n is odd.

• f (x) = sin x , x ∈ R.

The function f is continuous on R. It is strictly increasing on
the interval [−π/2, π/2] and maps this interval onto [−1, 1].
Therefore the inverse function f −1(x) = arcsin x is a well
defined, continuous function on [−1, 1].



Exponential function

First we define an for all a ∈ R and n ∈ N by
induction on n: a1 = a and an+1 = ana for all

n ∈ N.

Lemma 1 am+n = aman and amn = (am)n for all
a ∈ R and m, n ∈ N.

In the case a 6= 0, we also let a0 = 1 and

a−n = 1/an for all n ∈ N.

Lemma 2 am−n = am/an for all a 6= 0 and
integers m, n ≥ 0.

Lemma 3 am+n = aman and amn = (am)n for all
a 6= 0 and m, n ∈ Z.



Exponential function

Lemma 4 If m1,m2 ∈ Z and n1, n2 ∈ N satisfy
m1/n1 = m2/n2, then n1

√
am1 = n2

√
am2 for all

a > 0.

Now for any a > 0 and r ∈ Q we let ar = n
√
am,

where m ∈ Z and n ∈ N are chosen so that

r = m/n. This is well-defined due to Lemma 4.

Lemma 5 ar+s = aras and ars = (ar)s for all
a > 0 and r , s ∈ Q.

Lemma 6 Suppose a > 1 and r ∈ Q. Then
ar > 1 if r > 0, 0 < ar < 1 if r < 0, and ar = 1
if r = 0.



Exponential function

Given a > 0, consider a function fa : Q → R defined by
fa(r) = ar , r ∈ Q.

Lemma 7 The function fa is strictly increasing if a > 1,
strictly decreasing if 0 < a < 1, and constant if a = 1.

Idea of the proof: ar − as = as(ar−s − 1).

Lemma 8 n
√
a → 1 as n → ∞.

Lemma 9 lim
r→c

fa(r) exists for any c ∈ R.

Proof: By Lemma 7, fa is monotonic. Hence both one-sided
limits L+ = lim

r→c+
fa(r) and L− = lim

r→c−
fa(r) exist. We need

to show that L+ = L−. Let us choose a sequence {rn} of
rational numbers such that c − 1/n < rn < c for each n ∈ N.
Further, let sn = rn + 1/n, n ∈ N. Then c < sn < c + 1/n.
It follows that arn → L− and asn → L+ as n → ∞. Since
asn = arna1/n, Lemma 8 implies that L+ = L−.



Exponential function

Given a > 0, for any irrational x ∈ R \Q we let ax = lim
r→x
r∈Q

ar .

This is well-defined due to Lemma 9.

Now we have a function Fa : R → R defined by Fa(x) = ax ,
x ∈ R, namely, the exponential function with base a.

Theorem (i) The function Fa is strictly increasing if a > 1,
strictly decreasing if 0 < a < 1, and constant if a = 1.
(ii) The function Fa is continuous on R.
(iii) ax+y = axay for all x , y ∈ R.

Idea of the proof: Part (i) follows from Lemma 7. Part (ii)
follows from Lemma 9 and monotonicity of Fa. Part (iii)
follows from Lemma 5 and continuity of Fa.

Corollary If a 6= 1 then the function Fa is strictly monotonic
and maps R onto the interval (0,∞). The inverse function
F−1
a (x) = loga x is well-defined and continuous on (0,∞).



Uniform continuity

Definition. A function f : E → R defined on a set
E ⊂ R is called uniformly continuous on E if for

every ε > 0 there exists δ = δ(ε) > 0 such that
|x − y | < δ and x , y ∈ E imply |f (x)− f (y)| < ε.

Recall that the function f is continuous at a point

y ∈ E if for every ε > 0 there exists
δ = δ(y , ε) > 0 such that |x − y | < δ and x ∈ E

imply |f (x)− f (y)| < ε.

Therefore the uniform continuity of f is a stronger
property than the continuity of f on E .



Examples

• Constant function f (x) = a is uniformly
continuous on R.

Indeed, |f (x)− f (y )| = 0 < ε for any ε > 0 and x , y ∈ R.

• Identity function f (x) = x is uniformly
continuous on R.

Since f (x)− f (y ) = x − y , we have |f (x)− f (y )| < ε
whenever |x − y | < ε.

• The sine function f (x) = sin x is uniformly

continuous on R.

It was shown in an earlier lecture that |sin x − sin y | ≤ |x − y |
for all x , y ∈ R. Therefore |f (x)− f (y )| < ε whenever
|x − y | < ε.



Lipschitz functions

Definition. A function f : E → R is called a
Lipschitz function if there exists a constant L > 0

such that |f (x)− f (y)| ≤ L|x − y | for all x , y ∈ E .

• Any Lipschitz function is uniformly continuous.

Using notation of the definition, let δ(ε) = ε/L, ε > 0.
Then |x − y | < δ(ε) implies

|f (x)− f (y )| ≤ L|x − y | < Lδ(ε) = ε

for all x , y ∈ E .



• The function f (x) =
√
x is uniformly

continuous on [0,∞) but not Lipschitz.

For any n ∈ N, |f (1/n)− f (0)| =
√

1/n =
√
n |1/n − 0|.

It follows that f is not Lipschitz.

Given ε > 0, let δ = ε2. Suppose |x − y | < δ, where
x , y ≥ 0. To estimate |f (x)− f (y )|, we consider two cases.

In the case x , y ∈ [0, δ), we use the fact that f is strictly

increasing. Then |f (x)− f (y )| < f (δ)− f (0) =
√
δ = ε.

Otherwise, when x /∈ [0, δ) or y /∈ [0, δ), we have
max(x , y ) ≥ δ. Then

|√x −√
y | =

∣

∣

∣

∣

x − y√
x +

√
y

∣

∣

∣

∣

≤ |x − y |
√

max(x , y )
<

δ√
δ
=

√
δ = ε.

Thus f is uniformly continuous.



• The function f (x) = x2 is not uniformly
continuous on R.

Let ε = 2 and choose an arbitrary δ > 0. Let nδ be a natural
number such that 1/nδ < δ. Further, let xδ = nδ + 1/nδ and
yδ = nδ. Then |xδ − yδ| = 1/nδ < δ while

f (xδ)− f (yδ) = (nδ + 1/nδ)
2 − n2δ = 2 + 1/n2δ > ε.

We conclude that f is not uniformly continuous.

• The function f (x) = x2 is Lipschitz (and hence
uniformly continuous) on any bounded interval

[a, b].

For any x , y ∈ [a, b] we obtain

|x2 − y 2| = |(x + y )(x − y )| = |x + y | |x − y |
≤ (|x |+ |y |) |x − y | ≤ 2max(|a|, |b|) |x − y |.



Theorem Any function continuous on a compact set E
(e.g., E = [a, b]) is also uniformly continuous on E .

Proof: Assume that a function f : E → R is not uniformly
continuous on E . We have to show that f is not continuous
on E . By assumption, there exists ε > 0 such that for any
δ > 0 we can find two points x , y ∈ E satisfying |x − y | < δ
and |f (x)− f (y )| ≥ ε. In particular, for any n ∈ N there
exist points xn, yn ∈ E such that |xn − yn| < 1/n while
|f (xn)− f (yn)| ≥ ε.

Now {xn} is a sequence of elements of the compact set E .
Hence there is a subsequence {xnk} converging to a limit
c ∈ E . Since xn − 1/n < yn < xn + 1/n for all n ∈ N, the
subsequence {ynk} also converges to c. However the
inequalities |f (xnk )− f (ynk )| ≥ ε imply that at least one of
the sequences {f (xnk )} and {f (ynk )} is not converging to
f (c). It follows that the function f is not continuous at c.



Theorem Suppose that a function f : E → R is
uniformly continuous on E . Then it maps Cauchy

sequences to Cauchy sequences, that is, for any
Cauchy sequence {xn} ⊂ E the sequence {f (xn)} is
also Cauchy.

Proof: Let {xn} ⊂ E be a Cauchy sequence. Since the
function f is uniformly continuous on E , for every ε > 0 there
exists δ = δ(ε) such that |x − y | < δ and x , y ∈ E imply
|f (x)− f (y )| < ε. Since {xn} is a Cauchy sequence, there
exists N = N(δ) ∈ N such that |xn − xm| < δ for all
n,m ≥ N. Then |f (xn)− f (xm)| < ε for all n,m ≥ N.

We conclude that {f (xn)} is a Cauchy sequence.



Continuous extension

Theorem Suppose that a function f : E → R is

uniformly continuous. Then it can be extended to a
continuous function on the closure E . Moreover,

the extension is unique and uniformly continuous.

Example. Let a > 0. Then the function
fa : Q → R defined by fa(r) = ar is uniformly

continuous on [b1, b2] ∩Q for any bounded interval
[b1, b2]. Hence it is uniquely extended to a
continuous function on R.


