MATH 409
 Advanced Calculus I

Lecture 27:
 The derivative. Differentiability theorems.

The derivative

Definition. A function $f: I \rightarrow \mathbb{R}$ defined on an interval $I \subset \mathbb{R}$ is said to be differentiable at a point $x_{0} \in I$ if the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists and is finite. The limit is denoted $f^{\prime}\left(x_{0}\right)$ and called the derivative of f at x_{0}.
An equivalent condition is $f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}$.
Further, the one-sided limits $f_{+}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}+} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ and $f_{-}^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}-} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}$ are called the right-hand and left-hand derivatives of f at x_{0}. One of them or both might exist even if f is not differentiable at x_{0}.

Remark. If $I=[a, b]$ then $f^{\prime}(a)$ is essentially $f_{+}^{\prime}(a)$ while $f^{\prime}(b)$ is essentially $f_{-}^{\prime}(b)$.

Examples

- Constant function: $f(x)=c, x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{c-c}{h}=0$ for all $x \in \mathbb{R}$ and $h \neq 0$.
Therefore $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=0$.
That is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=0$ for all $x \in \mathbb{R}$.
- Identity function: $f(x)=x, x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{(x+h)-x}{h}=1$ for all $x \in \mathbb{R}, h \neq 0$.
Therefore $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=1$.
That is, f is differentiable on \mathbb{R} and $f^{\prime}(x)=1$ for all $x \in \mathbb{R}$.

Examples

- $f(x)=\sqrt{x}, \quad x \in[0, \infty)$.

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\frac{\sqrt{x}-\sqrt{x_{0}}}{x-x_{0}}
$$

$$
=\frac{\sqrt{x}-\sqrt{x_{0}}}{\left(\sqrt{x}-\sqrt{x_{0}}\right)\left(\sqrt{x}+\sqrt{x_{0}}\right)}=\frac{1}{\sqrt{x}+\sqrt{x_{0}}} .
$$

In the case $x_{0}>0$,

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \frac{1}{\sqrt{x}+\sqrt{x_{0}}}=\frac{1}{2 \sqrt{x_{0}}} .
$$

In the case $x_{0}=0, \quad \lim _{x \rightarrow 0+} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0+} \frac{1}{\sqrt{x}}=+\infty$.
Hence f is differentiable on $(0, \infty)$ and $f^{\prime}(x)=1 /(2 \sqrt{x})$ for all $x>0$. It is not differentiable at 0 as $f^{\prime}(0)=+\infty$.

Examples

- $f(x)=\sin x, \quad x \in \mathbb{R}$.

Since $\sin x-\sin x_{0}=2 \sin \frac{x-x_{0}}{2} \cos \frac{x+x_{0}}{2}$, we obtain
$\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\frac{\sin g\left(x, x_{0}\right)}{g\left(x, x_{0}\right)} \cos \frac{x+x_{0}}{2}$, where $g\left(x, x_{0}\right)=\frac{x-x_{0}}{2}$.
Note that $\lim _{x \rightarrow x_{0}} g\left(x, x_{0}\right)=0$ and $\lim _{y \rightarrow 0} \frac{\sin y}{y}=1$. Moreover, $g\left(x, x_{0}\right) \neq 0$ if $x \neq x_{0}$. It follows that $\lim _{x \rightarrow x_{0}} \frac{\sin g\left(x, x_{0}\right)}{g\left(x, x_{0}\right)}=1$.
Consequently, $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=\lim _{x \rightarrow x_{0}} \cos \frac{x+x_{0}}{2}=\cos x_{0}$.
Thus the function f is differentiable on \mathbb{R} and $f^{\prime}(x)=\cos x$ for all $x \in \mathbb{R}$.

Differentiability \Longrightarrow continuity

Theorem If a function f is differentiable at a point c, then it is continuous at c.

Proof:

$$
\begin{aligned}
& \lim _{x \rightarrow c} f(x)=\lim _{x \rightarrow c}\left(f(c)+\frac{f(x)-f(c)}{x-c}(x-c)\right) \\
& =\lim _{x \rightarrow c} f(c)+\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c}(x-c) \\
& =f(c)+f^{\prime}(c) \cdot 0=f(c)
\end{aligned}
$$

Remark. Similarly, if f has a right-hand derivative at c, then $\lim _{x \rightarrow c+} f(x)=f(c)$. If f has a left-hand derivative at c, then $\lim _{x \rightarrow c-} f(x)=f(c)$.

Sum Rule and Homogeneous Rule

Theorem If functions f and g are differentiable at a point $c \in \mathbb{R}$, then the sum $f+g$ is also differentiable at c.
Moreover, $(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c)$.
Proof: $\quad \lim _{x \rightarrow c} \frac{(f+g)(x)-(f+g)(c)}{x-c}$

$$
=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c}+\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}=f^{\prime}(c)+g^{\prime}(c) .
$$

Theorem If a function f is differentiable at a point $c \in \mathbb{R}$, then for any $r \in \mathbb{R}$ the scalar multiple $r f$ is also differentiable at c. Moreover, $(r f)^{\prime}(c)=r f^{\prime}(c)$.
Proof: $\lim _{x \rightarrow c} \frac{(r f)(x)-(r f)(c)}{x-c}=\lim _{x \rightarrow c} r \frac{f(x)-f(c)}{x-c}=r f^{\prime}(c)$.

Product Rule

Theorem If functions f and g are differentiable at a point $c \in \mathbb{R}$, then the product $f \cdot g$ is also differentiable at c. Moreover, $(f \cdot g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)$.

Proof: Let I be an interval such that f and g are both defined on I and $c \in I$. For every $x \in I \backslash\{c\}$ we have

$$
\begin{aligned}
& f(x) g(x)-f(c) g(c)=f(x) g(x)-f(c) g(x)+f(c) g(x) \\
& \quad-f(c) g(c)=(f(x)-f(c)) g(x)+f(c)(g(x)-g(c)) .
\end{aligned}
$$

Then $\frac{(f \cdot g)(x)-(f \cdot g)(c)}{x-c}=\frac{f(x)-f(c)}{x-c} g(x)+f(c) \frac{g(x)-g(c)}{x-c}$ so that

$$
\begin{aligned}
\lim _{x \rightarrow c} & \frac{(f \cdot g)(x)-(f \cdot g)(c)}{x-c}=\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c} g(x) \\
& +\lim _{x \rightarrow c} f(c) \cdot \lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}=f^{\prime}(c) g(c)+f(c) g^{\prime}(c) .
\end{aligned}
$$

Reciprocal Rule

Theorem If a function f is differentiable at a point $c \in \mathbb{R}$ and $f(c) \neq 0$, then the function $1 / f$ is also differentiable at c. Moreover, $(1 / f)^{\prime}(c)=-f^{\prime}(c) / f^{2}(c)$.
Proof: The function f is defined on an interval / containing c. We know that f is continuous at c. Since $\varepsilon=|f(c)|>0$, there exists $\delta>0$ such that $|f(x)-f(c)|<\varepsilon$ for any $x \in J=I \cap(c-\delta, c+\delta)$. Then $f(x) \neq 0$ for all $x \in J$. In particular, the function $1 / f$ is well defined on the interval J containing c. Now

$$
\begin{aligned}
& \lim _{x \rightarrow c} \frac{(1 / f)(x)-(1 / f)(c)}{x-c}=\lim _{x \rightarrow c}\left(\frac{1}{f(x)}-\frac{1}{f(c)}\right) \frac{1}{x-c} \\
& =\lim _{x \rightarrow c} \frac{f(c)-f(x)}{f(x) f(c)} \cdot \frac{1}{x-c}=\lim _{x \rightarrow c}\left(-\frac{f(x)-f(c)}{x-c} \cdot \frac{1}{f(x) f(c)}\right) \\
& =-\lim _{x \rightarrow c} \frac{f(x)-f(c)}{x-c} \cdot \lim _{x \rightarrow c} \frac{1}{f(x) f(c)}=-\frac{f^{\prime}(c)}{f^{2}(c)} .
\end{aligned}
$$

Difference Rule and Quotient Rule

Theorem If functions f and g are differentiable at a point $c \in \mathbb{R}$, then the difference $f-g$ is also differentiable at c. Moreover, $(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$.
Proof: By the Homogeneous Rule, the function $-g=(-1) g$ is differentiable at c and $(-g)^{\prime}(c)=-g^{\prime}(c)$. By the Sum Rule, the function $f-g=f+(-g)$ is also differentiable at c and $(f-g)^{\prime}(c)=f^{\prime}(c)+(-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c)$.

Theorem If functions f and g are differentiable at $c \in \mathbb{R}$ and $g(c) \neq 0$, then the quotient f / g is also differentiable at c. Moreover, $\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{g^{2}(c)}$.

Proof: By the Reciprocal Rule, the function $1 / g$ is differentiable at c and $(1 / g)^{\prime}(c)=-g^{\prime}(c) / g^{2}(c)$. By the Product Rule, the function $f / g=f \cdot(1 / g)$ is also differentiable at c and $(f / g)^{\prime}(c)=f^{\prime}(c) / g(c)+f(c)(1 / g)^{\prime}(c)$
$=\left(f^{\prime}(c) g(c)-f(c) g^{\prime}(c)\right) / g^{2}(c)$.

Power rule: integer exponents

Theorem $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
Proof: The proof is by induction on n. In the case $n=1$, we have $\left(x^{1}\right)^{\prime}=x^{\prime}=1=1 \cdot x^{0}$ for all $x \in \mathbb{R}$. Now assume that $\left(x^{n}\right)^{\prime}=n x^{n-1}$ for some $n \in \mathbb{N}$ and all $x \in \mathbb{R}$. Using the Product Rule, we obtain $\left(x^{n+1}\right)^{\prime}=\left(x^{n} x\right)^{\prime}=\left(x^{n}\right)^{\prime} x+x^{n} x^{\prime}$ $=n x^{n-1} x+x^{n}=(n+1) x^{n}$.

Remark. The theorem can also be proved directly using the formula $\frac{x^{n}-c^{n}}{x-c}=x^{n-1}+x^{n-2} c+\cdots+x c^{n-2}+c^{n-1}$.

Theorem $\left(x^{-n}\right)^{\prime}=-n x^{-n-1}$ for all $x \neq 0, n \in \mathbb{N}$.
Proof: Using the Reciprocal Rule, we obtain

$$
\left(x^{-n}\right)^{\prime}=\left(1 / x^{n}\right)^{\prime}=-\left(x^{n}\right)^{\prime} /\left(x^{n}\right)^{2}=-n x^{n-1} / x^{2 n}=-n x^{-n-1} .
$$

