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Advanced Calculus I

Lecture 27:

The derivative.

Differentiability theorems.



The derivative

Definition. A function f : I → R defined on an interval I ⊂ R

is said to be differentiable at a point x0 ∈ I if the limit

lim
x→x0

f (x)− f (x0)

x − x0

exists and is finite. The limit is denoted f ′(x0) and called the
derivative of f at x0.

An equivalent condition is f ′(x0) = lim
h→0

f (x0 + h)− f (x0)

h
.

Further, the one-sided limits f ′+(x0) = lim
x→x0+

f (x)−f (x0)
x−x0

and

f ′
−
(x0) = lim

x→x0−

f (x)−f (x0)
x−x0

are called the right-hand and

left-hand derivatives of f at x0. One of them or both might
exist even if f is not differentiable at x0.

Remark. If I = [a, b] then f ′(a) is essentially f ′+(a) while
f ′(b) is essentially f ′

−
(b).



Examples

• Constant function: f (x) = c , x ∈ R.

f (x + h)− f (x)

h
=

c − c

h
= 0 for all x ∈ R and h 6= 0.

Therefore lim
h→0

f (x + h)− f (x)

h
= 0.

That is, f is differentiable on R and f ′(x) = 0 for all x ∈ R.

• Identity function: f (x) = x , x ∈ R.

f (x + h)− f (x)

h
=

(x + h)− x

h
= 1 for all x ∈ R, h 6= 0.

Therefore lim
h→0

f (x + h)− f (x)

h
= 1.

That is, f is differentiable on R and f ′(x) = 1 for all x ∈ R.



Examples

• f (x) =
√
x , x ∈ [0,∞).

f (x)− f (x0)

x − x0
=

√
x −√

x0

x − x0

=

√
x −√

x0

(
√
x −√

x0)(
√
x +

√
x0)

=
1√

x +
√
x0
.

In the case x0 > 0,

lim
x→x0

f (x)− f (x0)

x − x0
= lim

x→x0

1√
x +

√
x0

=
1

2
√
x0
.

In the case x0 = 0, lim
x→0+

f (x)− f (0)

x − 0
= lim

x→0+

1√
x
= +∞.

Hence f is differentiable on (0,∞) and f ′(x) = 1/(2
√
x) for

all x > 0. It is not differentiable at 0 as f ′(0) = +∞.



Examples

• f (x) = sin x , x ∈ R.

Since sin x − sin x0 = 2 sin
x − x0

2
cos

x + x0

2
, we obtain

f (x)− f (x0)

x − x0
=

sin g(x , x0)

g(x , x0)
cos

x + x0

2
, where g(x , x0) =

x − x0

2
.

Note that lim
x→x0

g(x , x0) = 0 and lim
y→0

sin y

y
= 1. Moreover,

g(x , x0) 6= 0 if x 6= x0. It follows that lim
x→x0

sin g(x , x0)

g(x , x0)
= 1.

Consequently, lim
x→x0

f (x)− f (x0)

x − x0
= lim

x→x0
cos

x + x0

2
= cos x0.

Thus the function f is differentiable on R and f ′(x) = cos x
for all x ∈ R.



Differentiability =⇒ continuity

Theorem If a function f is differentiable at a point
c , then it is continuous at c .

Proof:

lim
x→c

f (x) = lim
x→c

(

f (c) +
f (x)− f (c)

x − c
(x − c)

)

= lim
x→c

f (c) + lim
x→c

f (x)− f (c)

x − c
· lim
x→c

(x − c)

= f (c) + f ′(c) · 0 = f (c).

Remark. Similarly, if f has a right-hand derivative at c, then
lim

x→c+
f (x) = f (c). If f has a left-hand derivative at c, then

lim
x→c−

f (x) = f (c).



Sum Rule and Homogeneous Rule

Theorem If functions f and g are differentiable at a point
c ∈ R, then the sum f + g is also differentiable at c.
Moreover, (f + g)′(c) = f ′(c) + g ′(c).

Proof: lim
x→c

(f + g)(x)− (f + g)(c)

x − c

= lim
x→c

f (x)− f (c)

x − c
+ lim

x→c

g(x)− g(c)

x − c
= f ′(c) + g ′(c).

Theorem If a function f is differentiable at a point c ∈ R,
then for any r ∈ R the scalar multiple rf is also differentiable
at c. Moreover, (rf )′(c) = rf ′(c).

Proof: lim
x→c

(rf )(x)− (rf )(c)

x − c
= lim

x→c
r
f (x)− f (c)

x − c
= rf ′(c).



Product Rule

Theorem If functions f and g are differentiable at a point
c ∈ R, then the product f · g is also differentiable at c.
Moreover, (f · g)′(c) = f ′(c)g(c) + f (c)g ′(c).

Proof: Let I be an interval such that f and g are both
defined on I and c ∈ I . For every x ∈ I \ {c} we have

f (x)g(x)− f (c)g(c) = f (x)g(x)− f (c)g(x) + f (c)g(x)

− f (c)g(c) =
(

f (x)− f (c)
)

g(x) + f (c)
(

g(x)− g(c)
)

.

Then (f ·g)(x)−(f ·g)(c)
x−c

= f (x)−f (c)
x−c

g(x) + f (c)g(x)−g(c)
x−c

so that

lim
x→c

(f · g)(x)− (f · g)(c)
x − c

= lim
x→c

f (x)− f (c)

x − c
· lim
x→c

g(x)

+ lim
x→c

f (c) · lim
x→c

g(x)− g(c)

x − c
= f ′(c)g(c) + f (c)g ′(c).



Reciprocal Rule

Theorem If a function f is differentiable at a point c ∈ R

and f (c) 6=0, then the function 1/f is also differentiable at c.
Moreover, (1/f )′(c) = −f ′(c)/f 2(c).

Proof: The function f is defined on an interval I containing
c. We know that f is continuous at c. Since ε = |f (c)| > 0,
there exists δ > 0 such that |f (x)− f (c)| < ε for any
x ∈ J = I ∩ (c − δ, c + δ). Then f (x) 6= 0 for all x ∈ J .
In particular, the function 1/f is well defined on the interval J
containing c. Now

lim
x→c

(1/f )(x)− (1/f )(c)

x − c
= lim

x→c

(

1

f (x)
− 1

f (c)

)

1

x − c

= lim
x→c

f (c)− f (x)

f (x)f (c)
· 1

x − c
= lim

x→c

(

− f (x)− f (c)

x − c
· 1

f (x)f (c)

)

= − lim
x→c

f (x)− f (c)

x − c
· lim
x→c

1

f (x)f (c)
= − f ′(c)

f 2(c)
.



Difference Rule and Quotient Rule

Theorem If functions f and g are differentiable at a point
c ∈ R, then the difference f − g is also differentiable at c.
Moreover, (f − g)′(c) = f ′(c)− g ′(c).

Proof: By the Homogeneous Rule, the function −g = (−1)g
is differentiable at c and (−g)′(c) = −g ′(c). By the Sum
Rule, the function f − g = f + (−g) is also differentiable at
c and (f − g)′(c) = f ′(c) + (−g)′(c) = f ′(c)− g ′(c).

Theorem If functions f and g are differentiable at c ∈ R

and g(c) 6= 0, then the quotient f /g is also differentiable at

c. Moreover, ( f
g
)′(c) = f ′(c)g(c)−f (c)g ′(c)

g2(c)
.

Proof: By the Reciprocal Rule, the function 1/g is
differentiable at c and (1/g)′(c) = −g ′(c)/g 2(c). By the
Product Rule, the function f /g = f · (1/g) is also
differentiable at c and (f /g)′(c) = f ′(c)/g(c) + f (c)(1/g)′(c)
=

(

f ′(c)g(c)− f (c)g ′(c)
)

/g 2(c).



Power rule: integer exponents

Theorem (xn)′ = nxn−1 for all x ∈ R and n ∈ N.

Proof: The proof is by induction on n. In the case n = 1,
we have (x1)′ = x ′ = 1 = 1 · x0 for all x ∈ R. Now assume
that (xn)′ = nxn−1 for some n ∈ N and all x ∈ R. Using
the Product Rule, we obtain (xn+1)′ = (xnx)′ = (xn)′x + xnx ′

= nxn−1x + xn = (n + 1)xn.

Remark. The theorem can also be proved directly using the

formula
xn − cn

x − c
= xn−1 + xn−2c + · · ·+ xcn−2 + cn−1.

Theorem (x−n)′ = −nx−n−1 for all x 6= 0, n ∈ N.

Proof: Using the Reciprocal Rule, we obtain
(x−n)′ = (1/xn)′ = −(xn)′/(xn)2 = −nxn−1/x2n = −nx−n−1.


