MATH 409
Advanced Calculus |
Lecture 27:

The derivative.
Differentiability theorems.



The derivative

Definition. A function f:/ — R defined on an interval [ C R
is said to be differentiable at a point xg € | if the limit

i F00) = F)
X—X0 X — Xo

exists and is finite. The limit is denoted f’(xp) and called the
derivative of f at xg.

An equivalent condition is f'(xp) = I|7irrz) oo + h/)7 — f(XO).
—

f(x)—f(x0)
X—Xp

Further, the one-sided limits f/(xp) = lim and

X—Xo+

' (x0) = lim %ﬁgm) are called the right-hand and

X—X0—
left-hand derivatives of f at xg. One of them or both might
exist even if f is not differentiable at x;.

Remark. If | = [a, b] then f'(a) is essentially f(a) while
f'(b) is essentially ' (b).



Examples
e Constant function: f(x) =c¢, x € R,

f(X*th),_f(X):C;C:o forall x €R and h 0.

Therefore lim fix+ h) — F(x)
h—0 h

That is, f is differentiable on R and f'(x) =0 for all x € R.

=0.

e Identity function: f(x) =x, x € R,

f(X+h/)7—f(X):(X+:)_X:1 forall x e R, h#0.

Therefore lim flx+ h) — F(x)
h—0 h

That is, f is differentiable on R and f'(x) =1 for all x € R.
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Examples

o f(x)=+/x, x €[0,00).
flx) = fx) _ vVx—vx

X — Xo X — Xo

Ve
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In the case xy > 0,

. f(x)— f(x) , 1 1
lim ———~= = lim = .
X—rX0 X — Xo X—rXp \/)_( + 1/ X0 2\/X0
f(x)—f 1
In the case xg =0, lim M = lim — =4
x=0+ x—0 x—=04+ /X

Hence f is differentiable on (0,00) and f'(x) = 1/(2y/x) for
all x > 0. It is not differentiable at 0 as f’(0) = +o0.



Examples

e f(x)=sinx, xeR.

X — Xp X + Xp

Since sinx —sinxg = 2 sin 5 cos B we obtain
f(x)—f i —
(x) = (o) = sin (x, %0) cosX+XO, where g(x,xo) = !
X—Xp g(x, xo) 2 2
siny
Note that lim g(x x0) =0 and lim —= =1. Moreover,
X=X y—=0 y
g(x,%0) £ 0 if x £ xo. It follows that lim sing(x.%0) _ 4.
X=X0 g(X7X0)
f(x)—f
Consequently, lim M = lim cos = COS Xp
X—r X0 X — Xo X— X0

Thus the function f is differentiable on R and f’(x) = cos x
for all x € R.




Differentiability —> continuity

Theorem If a function f is differentiable at a point
¢, then it is continuous at c.

Proof: ; ;
an@:lm(ad+igf7ghx—q)

= lim f(c) + lim f) = ). lim(x — ¢)

X—C X—cC X —C X—C
— f(c) + f'(c) -0 = f(c).

Remark. Similarly, if f has a right-hand derivative at ¢, then
“m+ f(x) = f(c). If f has a left-hand derivative at c, then
X—C

lim f(x) = f(c).

X—C—



Sum Rule and Homogeneous Rule

Theorem If functions f and g are differentiable at a point
c € R, then the sum f + g is also differentiable at c.
Moreover, (f + g)'(c) = f'(c) + g'(c).

(f +8)(x) — (f +g)(c)

Proof:  |im

= lim 7’[()2 — Z(C) + lim gi(xi — f(c) = f'(c) + &'(c).

Theorem If a function f is differentiable at a point ¢ € R,
then for any r € R the scalar multiple rf is also differentiable
at c. Moreover, (rf)(c) = rf'(c).

Proof: lim (rf)(x) = (rF)(c) = lim rM = rf'(c).

X—=C X —C X—C X —C




Product Rule

Theorem If functions f and g are differentiable at a point
c € R, then the product f - g is also differentiable at c.

Moreover, (f-g)'(c) = f'(c)g(c) + f(c)g’(c).

Proof: Let | be an interval such that f and g are both
defined on / and c € /. For every x € [\ {c} we have

f(x)g(x) — f(c)g(c) = f(x)g(x) — f(c)g(x) + f(c)g(x)
— f(c)g(c) = (f(x) — f(c))g(x) + f(c)(g(x) — g(c)).

Then (EQ=(Fe)O) _ FI-1(e) () | £()EREE) 5 that

X—C

(f-g)(x) —(f-g)(c) — lim M - lim g(x)

X—C X —C X—C X —C X—C

+ lim f(c) - lim gx) () _ f'(c)g(c) + f(c)g'(c).

X—C X—C X —C



Reciprocal Rule

Theorem If a function f is differentiable at a point ¢ € R
and f(c)#0, then the function 1/f is also differentiable at c.
Moreover, (1/f)(c) = —f'(c)/f?(c).

Proof: The function f is defined on an interval / containing
c. We know that f is continuous at ¢. Since ¢ = |f(c)| > 0,
there exists § > 0 such that |f(x) — f(c)| < € for any
xeJ=IN(c—0d,c+6). Then f(x)#0 forall x e J.

In particular, the function 1/f is well defined on the interval J
containing c. Now

iy (00 Q0E) _ gy (1) ]

bali? X—c T e \F(x) flo)) x—c

i () =001 :“m(_f(X)—f(c)‘ 1 )

x—c f(x)f(c) x—c x—c
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Difference Rule and Quotient Rule

Theorem If functions f and g are differentiable at a point
c € R, then the difference f — g is also differentiable at c.
Moreover, (f — g)'(c) = f'(c) — g'(c).

Proof: By the Homogeneous Rule, the function —g = (—1)g
is differentiable at ¢ and (—g)'(c) = —g’(c¢). By the Sum
Rule, the function f — g = f + (—g) is also differentiable at
¢ and (f —g)'(c) = f'(c) + (=g)'(c) = f'(c) — &'(c).

Theorem If functions f and g are differentiable at ¢ € R
and g(c) # 0, then the quotient f/g is also differentiable at

c. Moreover, (é{)’(c) — f/(C)g(;)Z—(Cf)(c)g/(c)_

Proof: By the Reciprocal Rule, the function 1/g is
differentiable at ¢ and (1/g)'(c) = —g'(c)/g?(c). By the
Product Rule, the function f/g =1f-(1/g) is also
differentiable at ¢ and (f/g)'(c)=1f"(c)/g(c)+f(c)(1/g)(¢c)
= (f'(c)g(c) — f(c)g'(c)) /&% (c).



Power rule: integer exponents

Theorem (x") = nx""! forall x e R and ne N.

Proof: The proof is by induction on n. In the case n=1,
we have (x!) =x"=1=1-x% forall x € R. Now assume
that (x") = nx"! for some n € N and all x € R. Using
the Product Rule, we obtain (x"1) = (x"x)" = (x")'x + x"x’
= nx"Ix +x" = (n+ 1)x".

Remark. The theorem can also be proved directly using the
n_ cn
formula

:Xn_l—|—Xn_2C+"'+XCn_2—|—Cn_1.
X —C

Theorem (x ") = —nx~""! forall x#0, neN.

Proof: Using the Reciprocal Rule, we obtain
(X—n)/ — (1/Xn)/ — —(X")//(X")z — _an—l/X2n — _nX—n—l.



