
MATH 409

Advanced Calculus I

Lecture 28:
Differentiability theorems (continued).

Derivatives of elementary functions.



The derivative

Definition. A function f : I → R defined on an interval I ⊂ R

is said to be differentiable at a point x0 ∈ I if the limit

lim
x→x0

f (x)− f (x0)

x − x0

exists and is finite. The limit (finite or infinite) is called the
derivative of f at x0. In the case the function f is
differentiable on the entire interval I (i.e., at every point of I ),
we consider the derivative of f as yet another function on I .

Notation: f ′. Alternative notation: ḟ ,
df

dx
, Dx f , f (1).

The value of the derivative function at a point x0 is denoted
f ′(x0) or (f (x))′|x=x0.

For example, the derivative of a function f (x) = x2 at 2 can
be denoted f ′(2) or (x2)′|x=2, but not (22)′.



Examples of differentiable functions

• 1′ = 0.

• x ′ = 1.

• (
√
x)′ =

1

2
√
x

on (0,∞).

• (sin x)′ = cos x .

• (x2)′ = 2x .

•
(

1

x

)′
= − 1

x2
on R \ {0}.



Differentiability theorems

Theorem If functions f and g are differentiable at a point
c ∈ R (and both defined on an interval containing c), then
their sum f + g , difference f − g , and product f · g are also
differentiable at c. Moreover,

(f + g)′(c) = f ′(c) + g ′(c),

(f − g)′(c) = f ′(c)− g ′(c),

(f · g)′(c) = f ′(c)g(c) + f (c)g ′(c).

If, additionally, g(c) 6= 0 then the quotient f /g is also
differentiable at c and

(

f

g

)

′

(c) =
f ′(c)g(c)− f (c)g ′(c)

(g(c))2
.



Chain Rule

Theorem If a function f is differentiable at a point c ∈ R

and a function g is differentiable at f (c), then the composition
g ◦ f is differentiable at c (assuming the domain of g ◦ f is
not just {c}). Moreover, (g ◦ f )′(c) = g ′(f (c)) · f ′(c).
Proof: If the domain of g ◦ f is not just {c}, then it
contains an interval I such that c ∈ I (since f is continuous
at c and g is continuous at f (c)). Let E denote the set of all
points x ∈ I such that f (x) 6= f (c). If x ∈ E then

(g ◦ f )(x)− (g ◦ f )(c)
x − c

=
g(f (x))− g(f (c))

f (x)− f (c)
· f (x)− f (c)

x − c
.

Since lim
x→c

f (x) = f (c), the limit of the above expression at c

within the set E equals g ′(f (c)) · f ′(c). In the case c is an
accumulation point for I \ E , we also need to take the limit at
c within I \ E . That limit is clearly 0. Fortunately, in this
case we also have f ′(c) = 0 so that 0 = g ′(f (c)) · f ′(c).



Examples of differentiation

• f (x) = cos x , x ∈ R.

The function f can be represented as a composition
f = h ◦ g , where g(x) = x + π/2 and h(x) = sin x , x ∈ R.
Since g ′(x) = 1 and h′(x) = cos x for all x ∈ R, the Chain
Rule implies that f is differentiable on R and
f ′(x) = h′(g(x))g ′(x) = cos(x + π/2) = − sin x for all x ∈ R.

• f (x) = tan x , x ∈ (−π/2, π/2).

Since f (x) = sin x/cos x and cos x 6= 0 for x ∈ (−π/2, π/2),
the Quotient Rule implies that f is differentiable on
(−π/2, π/2) and

f ′(x) =
(sin x)′ cos x − sin x (cos x)′

cos2 x
=

cos2x + sin2x

cos2x
=

1

cos2x

for all x ∈ (−π/2, π/2).



Derivative of the inverse function

Theorem Suppose f is an invertible continuous
function. If f is differentiable at a point x0 and
f ′(x0) 6= 0, then the inverse function is differentiable

at the point y0 = f (x0) and, moreover,

(f −1)′(y0) =
1

f ′(x0)
.

Remark. In the case f ′(x0) = 0, the inverse function f −1 is
not differentiable at f (x0). Indeed, if f −1 is differentiable at
y0 = f (x0), then the Chain Rule implies that

(f −1 ◦ f )′(x0) = (f −1)′(y0) · f ′(x0).
Obviously, f −1 ◦ f is the identity function. Therefore
(f −1 ◦ f )′(x0) = 1 6= 0 so that f ′(x0) 6= 0.



Proof of the theorem: The function f is defined on an
interval I containing x0. Since f is continuous and invertible,
it follows from the Intermediate Value Theorem that f is
strictly monotonic on I , the image f (I ) is an interval
containing y0, and the inverse function f −1 is strictly
monotonic and continuous on f (I ).

We have lim
x→x0

f (x)− f (x0)

x − x0
= f ′(x0). Since f ′(x0) 6= 0, it

follows that lim
x→x0

x − x0

f (x)− f (x0)
=

1

f ′(x0)
. Since f −1 is

continuous and strictly monotonic on the interval f (I ), we
obtain that lim

y→y0
f −1(y ) = x0 and f −1(y ) 6= x0 if y 6= y0.

Therefore lim
y→y0

f −1(y )− x0

y − y0
= lim

y→y0

f −1(y )− x0

f (f −1(y ))− y0

= lim
x→x0

x − x0

f (x)− f (x0)
=

1

f ′(x0)
.



Example

• f (x) = arccos x , x ∈ [−1, 1].

The function g(y ) = cos y is strictly decreasing on the
interval [0, π] and maps this interval onto [−1, 1]. By
definition, the function f (x) = arccos x is the inverse of the
restriction of g to [0, π]. Notice that g ′(0) = g ′(π) = 0 and
g ′(y ) 6= 0 for y ∈ (0, π). It follows that the function f is
differentiable on (−1, 1) and not differentiable at 1 and −1.
Moreover, for any x ∈ (−1, 1),

f ′(x) =
1

g ′(f (x))
= − 1

sin(arccos x)
.

Let y = arccos x . We have sin2 y + cos2 y = 1. Besides,
sin y > 0 since y ∈ (0, π). Consequently,

sin y =
√

1− cos2 y =
√
1− x2. Thus f ′(x) = − 1√

1− x2
.



Exponential and logarithmic functions

Theorem The sequence xn =
(

1 + 1
n

)n
, n ∈ N is increasing

and bounded, hence convergent.

The limit is the number e = 2.718281828 . . . (“I’m forming a

mnemonic to remember a constant in calculus”).

Corollary lim
x→0

(1 + x)1/x = e.

For any a > 0, a 6= 1 the exponential function f (x) = ax is
strictly monotonic and continuous on R. It maps R onto
(0,∞). Therefore the inverse function g(y ) = loga y is
strictly monotonic and continuous on (0,∞). The natural
logarithm loge y is also denoted log y .

Since (1 + h)1/h → e as h → 0, it follows that
h−1 log(1 + h) = log(1 + h)1/h → log e = 1 as h → 0.
In other words, (log y )′|y=1 = 1. This implies that
(ex)′|x=0 = 1.



Examples of differentiation

• f (x) = ex , x ∈ R.

f (x + h)− f (x)

h
=

ex+h − ex

h
=

exeh − ex

h
=

ex(eh − 1)

h

for all x , h ∈ R. Therefore for any x ∈ R,

f ′(x) = lim
h→0

f (x + h)− f (x)

h
= ex lim

h→0

eh − 1

h
= ex f ′(0) = ex .

• f (x) = ax , x ∈ R, where a > 0.

f (x) = e log a
x

= ex log a so that f ′(x) = ex log a log a = ax log a.

• f (x) = log x , x ∈ (0,∞).

Since f is the inverse of the function g(y ) = ey , we obtain
f ′(x) = 1/g ′(log x) = 1/e log x = 1/x for all x > 0.



Power rule: general case

Theorem (xα)′ = αxα−1 for all x > 0 and α ∈ R.

Proof: Let us fix a number α ∈ R and consider a
function f (x) = xα, x ∈ (0,∞). For any x > 0

we obtain f (x) = e log(x
α) = eα log x = alog x , where

a = eα. Hence f = h ◦ g , where g(x) = log x ,

x > 0 and h(y) = ay , y ∈ R. By the Chain Rule,

f ′(x) = h′(g(x)) · g ′(x) = alog x log a · (log x)′
= f (x) log a · (log x)′ = f (x) · α(log x)′
= f (x) · α/x = xα · α/x = αxα−1.


