MATH 409

Advanced Calculus |
Lecture 28:

Differentiability theorems (continued).
Derivatives of elementary functions.



The derivative

Definition. A function f:l — R defined on an interval [ C R
is said to be differentiable at a point xg € | if the limit

G0~ ()

X—X0 X — Xo
exists and is finite. The limit (finite or infinite) is called the
derivative of f at xg. In the case the function f is

differentiable on the entire interval / (i.e., at every point of /),
we consider the derivative of f as yet another function on /.

. df
Notation: f'. Alternative notation: f, ™~ D.f, FA),
Ix

The value of the derivative function at a point xp is denoted
f'(x0) or (f(x))'lx=s0-

For example, the derivative of a function f(x) = x* at 2 can
be denoted f/(2) or (x?)'|=2, but not (22)'.



Examples of differentiable functions

e 1'=0
e X' =1
e (V/x)==—= on (0,00).

\/7

e (sinx) = cosx.

(x?)" = 2x.

. (1)/:_i on R\ {0}.

X X2



Differentiability theorems

Theorem If functions f and g are differentiable at a point

c € R (and both defined on an interval containing c), then
their sum f + g, difference f — g, and product f - g are also
differentiable at c¢. Moreover,

(f+g)(c) = f'(c) + &'(c),
(f —g)(c) = f'(c) — &'(c),
(f-g)'(c) = f'(c)g(c) + f(c)g'(c).

If, additionally, g(c) # 0 then the quotient /g is also
differentiable at ¢ and

'y _ F(e)gle) = f(c)g'(c)
(g) (€) (g(c))? '




Chain Rule

Theorem If a function f is differentiable at a point c € R
and a function g is differentiable at f(c), then the composition
g o f is differentiable at ¢ (assuming the domain of gof is
not just {c}). Moreover, (go f)'(c)=g'(f(c))- f'(c).

Proof: If the domain of gof is not just {c}, then it
contains an interval / such that ¢ € | (since f is continuous
at ¢ and g is continuous at f(c)). Let E denote the set of all
points x € | such that f(x) # f(c). If x € E then

(g0f)(x) — (gof)(c) _ &(f(x)) —g(flc)) f(x)—F(c)

X—c f(x)—f(c) xX—c
Since lim f(x) = f(c), the limit of the above expression at ¢
X—C
within the set E equals g'(f(c)) - f’(c). In the case c is an
accumulation point for /\ E, we also need to take the limit at

c within 1\ E. That limit is clearly 0. Fortunately, in this
case we also have f’(c) =0 so that 0 = g'(f(c)) - f'(c).



Examples of differentiation
o f(x)=cosx, x€R.

The function f can be represented as a composition
f=hog, where g(x) =x+m/2 and h(x) =sinx, x € R.
Since g’(x) =1 and H'(x) = cosx for all x € R, the Chain
Rule implies that f is differentiable on R and

f'(x) = W(g(x))g'(x) = cos(x + m/2) = —sinx forall x € R.

o f(x)=tanx, x € (—7/2,7/2).

Since f(x) =sinx/cosx and cosx # 0 for x € (—7/2,7/2),
the Quotient Rule implies that f is differentiable on
(—m/2,7/2) and
) (sinx) cos x — sinx (cosx)’  cos?x + sin’x 1
cos? x cos2x cos?x
for all x € (—m/2,7/2).




Derivative of the inverse function

Theorem Suppose f is an invertible continuous
function. If f is differentiable at a point xg and
f'(x0) # 0, then the inverse function is differentiable
at the point yy = f(xo) and, moreover,

(F 00 = 7y

Remark. In the case f'(xo) =0, the inverse function =t is
not differentiable at f(xo). Indeed, if f~1 is differentiable at
¥o = f(x), then the Chain Rule implies that

(F 1o ) (%) = (F1) (%) - f'(x0)-
Obviously, f=1 o f is the identity function. Therefore
(fLof)(x)=1+#0 sothat f'(xp) # 0.




Proof of the theorem: The function f is defined on an
interval | containing xo. Since f is continuous and invertible,
it follows from the Intermediate Value Theorem that f is
strictly monotonic on /, the image f(/) is an interval
containing yo, and the inverse function ! is strictly
monotonic and continuous on f(/).

f(x)—f
We have lim f) = flxo) = f'(x0). Since f'(xp) # 0, it
X—X0 X — Xo
X — Xo 1

Since f1is

follows that | =
R RO )

continuous and strictly monotonic on the interval f(/), we
obtain that lim f71(y) =x and f~i(y) # xo if ¥y # yo.

Y=Y
f_l _ f_l _
Therefore lim M = lim y) — X
y=yo Y = Yo y=yo F(F71(y)) — yo

. X — Xo 1
= lim =

x=x f(x)—f(xo) (%)




Example

e f(x)=arccosx, x € [-1,1].

The function g(y) = cosy is strictly decreasing on the
interval [0, 7] and maps this interval onto [—1,1]. By
definition, the function f(x) = arccos x is the inverse of the
restriction of g to [0,7]. Notice that g’(0) = g’(w) =0 and
g'(y) #0 for y € (0,m). It follows that the function f is
differentiable on (—1,1) and not differentiable at 1 and —1.
Moreover, for any x € (—1,1),

"(x) = 1 = — .
f'(x) g/ (F(x)) sin(arccos x)

Let y = arccosx. We have sin?y + cos?y = 1. Besides,
siny > 0 since y € (0,7). Consequently,

1
siny = /1 —cos?y =+/1—x2. Thus f(x) = —

V1—x2




Exponential and logarithmic functions

Theorem The sequence x, = (1 + %)n n € N is increasing
and bounded, hence convergent.

The limit is the number e =2.718281828... (“I'm forming a
mnemonic to remember a constant in calculus™).

Ux = e,

Corollary lim (1 + x)
x—0

For any a >0, a # 1 the exponential function f(x) = a* is

strictly monotonic and continuous on R. It maps R onto

(0,00). Therefore the inverse function g(y) = log,y is

strictly monotonic and continuous on (0, 00). The natural

logarithm log, y is also denoted log y.

Since (14 h)¥" — e as h— 0, it follows that
h~Ylog(1 + h) = log(1 + h)*/" — loge =1 as h — 0.
In other words, (logy)’|,=1 = 1. This implies that
() |x=0 = 1.



Examples of differentiation
o f(x)=¢€" xeR.

f(x+h)—f(x) eth—ex eXeh—e e¥(eh—1)

h h h h
for all x, h € R. Therefore for any x € R,
. f(x+h)—f(x) . eh—1
! _ _ AX — X / — X
f(X)_fI,'_rﬂ) - —e}]mih e f'(0) = e.

o f(x)=2a" x€R, where a>0.

f(x) = €98 = X183 5o that f'(x) = e¥'°8?loga = a*log a.

o f(x)=logx, x € (0,00).

Since f is the inverse of the function g(y) = e€”, we obtain
f'(x)=1/g'(logx) = 1/e"°8* = 1/x for all x > 0.



Power rule: general case

Theorem (x%) = ax® ! forall x>0 and a € R.

Proof: Let us fix a number a € R and consider a
function f(x) = x%, x € (0,00). Forany x >0
we obtain f(x) = e'98(x") = glogx — glogx \yhere
a=ce"“ Hence f =hog, where g(x)=logx,
x>0 and h(y) = 2", y € R. By the Chain Rule,
f'(x) = H(g(x)) - g'(x) = a°*loga- (log x)
= f(x)loga- (logx) = f(x) - a(log x)’

— f(x) . a/x = x%. a/x = ax® 1,



