MATH 409 Advanced Calculus I

Lecture 28: Differentiability theorems (continued). Derivatives of elementary functions.

The derivative

Definition. A function $f: I \to \mathbb{R}$ defined on an interval $I \subset \mathbb{R}$ is said to be **differentiable** at a point $x_0 \in I$ if the limit

$$\lim_{x\to x_0}\frac{f(x)-f(x_0)}{x-x_0}$$

exists and is finite. The limit (finite or infinite) is called the **derivative** of f at x_0 . In the case the function f is differentiable on the entire interval I (i.e., at every point of I), we consider the derivative of f as yet another function on I.

Notation:
$$f'$$
. Alternative notation: \dot{f} , $\frac{df}{dx}$, $D_x f$, $f^{(1)}$.

The value of the derivative function at a point x_0 is denoted $f'(x_0)$ or $(f(x))'|_{x=x_0}$.

For example, the derivative of a function $f(x) = x^2$ at 2 can be denoted f'(2) or $(x^2)'|_{x=2}$, but not $(2^2)'$.

Examples of differentiable functions

•
$$1' = 0.$$

•
$$(\sqrt{x})' = \frac{1}{2\sqrt{x}}$$
 on $(0,\infty)$.

•
$$(\sin x)' = \cos x$$
.

•
$$(x^2)' = 2x$$
.
• $(\frac{1}{x})' = -\frac{1}{x^2}$ on $\mathbb{R} \setminus \{0\}$.

Differentiability theorems

Theorem If functions f and g are differentiable at a point $c \in \mathbb{R}$ (and both defined on an interval containing c), then their sum f + g, difference f - g, and product $f \cdot g$ are also differentiable at c. Moreover,

$$(f+g)'(c) = f'(c) + g'(c),$$

 $(f-g)'(c) = f'(c) - g'(c),$
 $(f \cdot g)'(c) = f'(c)g(c) + f(c)g'(c).$

If, additionally, $g(c) \neq 0$ then the quotient f/g is also differentiable at c and

$$\left(\frac{f}{g}\right)'(c)=\frac{f'(c)g(c)-f(c)g'(c)}{(g(c))^2}.$$

Chain Rule

Theorem If a function f is differentiable at a point $c \in \mathbb{R}$ and a function g is differentiable at f(c), then the composition $g \circ f$ is differentiable at c (assuming the domain of $g \circ f$ is not just $\{c\}$). Moreover, $(g \circ f)'(c) = g'(f(c)) \cdot f'(c)$.

Proof: If the domain of $g \circ f$ is not just $\{c\}$, then it contains an interval I such that $c \in I$ (since f is continuous at c and g is continuous at f(c)). Let E denote the set of all points $x \in I$ such that $f(x) \neq f(c)$. If $x \in E$ then

$$\frac{(g\circ f)(x)-(g\circ f)(c)}{x-c}=\frac{g(f(x))-g(f(c))}{f(x)-f(c)}\cdot\frac{f(x)-f(c)}{x-c}$$

Since $\lim_{x\to c} f(x) = f(c)$, the limit of the above expression at c within the set E equals $g'(f(c)) \cdot f'(c)$. In the case c is an accumulation point for $I \setminus E$, we also need to take the limit at c within $I \setminus E$. That limit is clearly 0. Fortunately, in this case we also have f'(c) = 0 so that $0 = g'(f(c)) \cdot f'(c)$.

Examples of differentiation

•
$$f(x) = \cos x, x \in \mathbb{R}$$
.

The function f can be represented as a composition $f = h \circ g$, where $g(x) = x + \pi/2$ and $h(x) = \sin x$, $x \in \mathbb{R}$. Since g'(x) = 1 and $h'(x) = \cos x$ for all $x \in \mathbb{R}$, the Chain Rule implies that f is differentiable on \mathbb{R} and $f'(x) = h'(g(x))g'(x) = \cos(x + \pi/2) = -\sin x$ for all $x \in \mathbb{R}$.

•
$$f(x) = \tan x, x \in (-\pi/2, \pi/2).$$

Since $f(x) = \sin x / \cos x$ and $\cos x \neq 0$ for $x \in (-\pi/2, \pi/2)$, the Quotient Rule implies that f is differentiable on $(-\pi/2, \pi/2)$ and

$$f'(x) = \frac{(\sin x)' \cos x - \sin x (\cos x)'}{\cos^2 x} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x} = \frac{1}{\cos^2 x}$$

for all $x \in (-\pi/2, \pi/2)$.

Derivative of the inverse function

Theorem Suppose f is an invertible continuous function. If f is differentiable at a point x_0 and $f'(x_0) \neq 0$, then the inverse function is differentiable at the point $y_0 = f(x_0)$ and, moreover,

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)}.$$

Remark. In the case $f'(x_0) = 0$, the inverse function f^{-1} is not differentiable at $f(x_0)$. Indeed, if f^{-1} is differentiable at $y_0 = f(x_0)$, then the Chain Rule implies that

$$(f^{-1} \circ f)'(x_0) = (f^{-1})'(y_0) \cdot f'(x_0).$$

Obviously, $f^{-1} \circ f$ is the identity function. Therefore $(f^{-1} \circ f)'(x_0) = 1 \neq 0$ so that $f'(x_0) \neq 0$.

Proof of the theorem: The function f is defined on an interval I containing x_0 . Since f is continuous and invertible, it follows from the Intermediate Value Theorem that f is strictly monotonic on I, the image f(I) is an interval containing y_0 , and the inverse function f^{-1} is strictly monotonic and continuous on f(I).

 \rangle

We have
$$\lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = f'(x_0)$$
. Since $f'(x_0) \neq 0$, it
follows that $\lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$. Since f^{-1} is
continuous and strictly monotonic on the interval $f(I)$, we
obtain that $\lim_{y \to y_0} f^{-1}(y) = x_0$ and $f^{-1}(y) \neq x_0$ if $y \neq y_0$.
Therefore $\lim_{y \to y_0} \frac{f^{-1}(y) - x_0}{y - y_0} = \lim_{y \to y_0} \frac{f^{-1}(y) - x_0}{f(f^{-1}(y)) - y_0}$
 $= \lim_{x \to x_0} \frac{x - x_0}{f(x) - f(x_0)} = \frac{1}{f'(x_0)}$.

Example

•
$$f(x) = \arccos x, x \in [-1, 1].$$

The function $g(y) = \cos y$ is strictly decreasing on the interval $[0, \pi]$ and maps this interval onto [-1, 1]. By definition, the function $f(x) = \arccos x$ is the inverse of the restriction of g to $[0, \pi]$. Notice that $g'(0) = g'(\pi) = 0$ and $g'(y) \neq 0$ for $y \in (0, \pi)$. It follows that the function f is differentiable on (-1, 1) and not differentiable at 1 and -1. Moreover, for any $x \in (-1, 1)$,

$$f'(x) = \frac{1}{g'(f(x))} = -\frac{1}{\sin(\arccos x)}.$$

Let $y = \arccos x$. We have $\sin^2 y + \cos^2 y = 1$. Besides, $\sin y > 0$ since $y \in (0, \pi)$. Consequently,

$$\sin y = \sqrt{1 - \cos^2 y} = \sqrt{1 - x^2}$$
. Thus $f'(x) = -\frac{1}{\sqrt{1 - x^2}}$.

Exponential and logarithmic functions

Theorem The sequence $x_n = (1 + \frac{1}{n})^n$, $n \in \mathbb{N}$ is increasing and bounded, hence convergent.

The limit is the number e = 2.718281828... ("I'm forming a mnemonic to remember a constant in calculus").

Corollary
$$\lim_{x\to 0} (1+x)^{1/x} = e.$$

For any a > 0, $a \neq 1$ the exponential function $f(x) = a^x$ is strictly monotonic and continuous on \mathbb{R} . It maps \mathbb{R} onto $(0,\infty)$. Therefore the inverse function $g(y) = \log_a y$ is strictly monotonic and continuous on $(0,\infty)$. The natural logarithm $\log_e y$ is also denoted $\log y$.

Since
$$(1+h)^{1/h} \to e$$
 as $h \to 0$, it follows that
 $h^{-1}\log(1+h) = \log(1+h)^{1/h} \to \log e = 1$ as $h \to 0$.
In other words, $(\log y)'|_{y=1} = 1$. This implies that
 $(e^x)'|_{x=0} = 1$.

Examples of differentiation

•
$$f(x) = e^x$$
, $x \in \mathbb{R}$.
 $\frac{f(x+h) - f(x)}{h} = \frac{e^{x+h} - e^x}{h} = \frac{e^x e^h - e^x}{h} = \frac{e^x (e^h - 1)}{h}$

for all $x, h \in \mathbb{R}$. Therefore for any $x \in \mathbb{R}$,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x f'(0) = e^x.$$

•
$$f(x) = a^x$$
, $x \in \mathbb{R}$, where $a > 0$.

 $f(x) = e^{\log a^x} = e^{x \log a}$ so that $f'(x) = e^{x \log a} \log a = a^x \log a$.

•
$$f(x) = \log x, x \in (0, \infty).$$

Since f is the inverse of the function $g(y) = e^y$, we obtain $f'(x) = 1/g'(\log x) = 1/e^{\log x} = 1/x$ for all x > 0.

Power rule: general case

Theorem $(x^{\alpha})' = \alpha x^{\alpha-1}$ for all x > 0 and $\alpha \in \mathbb{R}$.

Proof: Let us fix a number $\alpha \in \mathbb{R}$ and consider a function $f(x) = x^{\alpha}$, $x \in (0, \infty)$. For any x > 0we obtain $f(x) = e^{\log(x^{\alpha})} = e^{\alpha \log x} = a^{\log x}$, where $a = e^{\alpha}$. Hence $f = h \circ g$, where $g(x) = \log x$, x > 0 and $h(y) = a^y$, $y \in \mathbb{R}$. By the Chain Rule, $f'(x) = h'(g(x)) \cdot g'(x) = a^{\log x} \log a \cdot (\log x)'$ $f(x) \log a \cdot (\log x)' = f(x) \cdot \alpha (\log x)'$ $= f(x) \cdot \alpha / x = x^{\alpha} \cdot \alpha / x = \alpha x^{\alpha - 1}.$