MATH 409
 Advanced Calculus I

Lecture 28:
 Differentiability theorems (continued). Derivatives of elementary functions.

The derivative

Definition. A function $f: I \rightarrow \mathbb{R}$ defined on an interval $I \subset \mathbb{R}$ is said to be differentiable at a point $x_{0} \in I$ if the limit

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

exists and is finite. The limit (finite or infinite) is called the derivative of f at x_{0}. In the case the function f is differentiable on the entire interval I (i.e., at every point of I), we consider the derivative of f as yet another function on I.

Notation: f^{\prime}. Alternative notation: $\dot{f}, \frac{d f}{d x}, D_{x} f, f^{(1)}$.
The value of the derivative function at a point x_{0} is denoted $f^{\prime}\left(x_{0}\right)$ or $\left.(f(x))^{\prime}\right|_{x=x_{0}}$.
For example, the derivative of a function $f(x)=x^{2}$ at 2 can be denoted $f^{\prime}(2)$ or $\left.\left(x^{2}\right)^{\prime}\right|_{x=2}$, but not $\left(2^{2}\right)^{\prime}$.

Examples of differentiable functions

- $1^{\prime}=0$.
- $x^{\prime}=1$.
- $(\sqrt{x})^{\prime}=\frac{1}{2 \sqrt{x}}$ on $(0, \infty)$.
- $(\sin x)^{\prime}=\cos x$.
- $\left(x^{2}\right)^{\prime}=2 x$.
- $\left(\frac{1}{x}\right)^{\prime}=-\frac{1}{x^{2}}$ on $\mathbb{R} \backslash\{0\}$.

Differentiability theorems

Theorem If functions f and g are differentiable at a point $c \in \mathbb{R}$ (and both defined on an interval containing c), then their sum $f+g$, difference $f-g$, and product $f \cdot g$ are also differentiable at c. Moreover,

$$
\begin{gathered}
(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c) \\
(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c) \\
(f \cdot g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c)
\end{gathered}
$$

If, additionally, $g(c) \neq 0$ then the quotient f / g is also differentiable at c and

$$
\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}
$$

Chain Rule

Theorem If a function f is differentiable at a point $c \in \mathbb{R}$ and a function g is differentiable at $f(c)$, then the composition $g \circ f$ is differentiable at c (assuming the domain of $g \circ f$ is not just $\{c\}$). Moreover, $(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.
Proof: If the domain of $g \circ f$ is not just $\{c\}$, then it contains an interval $/$ such that $c \in I$ (since f is continuous at c and g is continuous at $f(c)$). Let E denote the set of all points $x \in I$ such that $f(x) \neq f(c)$. If $x \in E$ then

$$
\frac{(g \circ f)(x)-(g \circ f)(c)}{x-c}=\frac{g(f(x))-g(f(c))}{f(x)-f(c)} \cdot \frac{f(x)-f(c)}{x-c} .
$$

Since $\lim _{x \rightarrow c} f(x)=f(c)$, the limit of the above expression at c within the set E equals $g^{\prime}(f(c)) \cdot f^{\prime}(c)$. In the case c is an accumulation point for $I \backslash E$, we also need to take the limit at c within $I \backslash E$. That limit is clearly 0 . Fortunately, in this case we also have $f^{\prime}(c)=0$ so that $0=g^{\prime}(f(c)) \cdot f^{\prime}(c)$.

Examples of differentiation

- $f(x)=\cos x, \quad x \in \mathbb{R}$.

The function f can be represented as a composition $f=h \circ g$, where $g(x)=x+\pi / 2$ and $h(x)=\sin x, x \in \mathbb{R}$. Since $g^{\prime}(x)=1$ and $h^{\prime}(x)=\cos x$ for all $x \in \mathbb{R}$, the Chain Rule implies that f is differentiable on \mathbb{R} and $f^{\prime}(x)=h^{\prime}(g(x)) g^{\prime}(x)=\cos (x+\pi / 2)=-\sin x$ for all $x \in \mathbb{R}$.

- $f(x)=\tan x, \quad x \in(-\pi / 2, \pi / 2)$.

Since $f(x)=\sin x / \cos x$ and $\cos x \neq 0$ for $x \in(-\pi / 2, \pi / 2)$, the Quotient Rule implies that f is differentiable on $(-\pi / 2, \pi / 2)$ and
$f^{\prime}(x)=\frac{(\sin x)^{\prime} \cos x-\sin x(\cos x)^{\prime}}{\cos ^{2} x}=\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}$
for all $x \in(-\pi / 2, \pi / 2)$.

Derivative of the inverse function

Theorem Suppose f is an invertible continuous function. If f is differentiable at a point x_{0} and $f^{\prime}\left(x_{0}\right) \neq 0$, then the inverse function is differentiable at the point $y_{0}=f\left(x_{0}\right)$ and, moreover,

$$
\left(f^{-1}\right)^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}
$$

Remark. In the case $f^{\prime}\left(x_{0}\right)=0$, the inverse function f^{-1} is not differentiable at $f\left(x_{0}\right)$. Indeed, if f^{-1} is differentiable at $y_{0}=f\left(x_{0}\right)$, then the Chain Rule implies that

$$
\left(f^{-1} \circ f\right)^{\prime}\left(x_{0}\right)=\left(f^{-1}\right)^{\prime}\left(y_{0}\right) \cdot f^{\prime}\left(x_{0}\right) .
$$

Obviously, $f^{-1} \circ f$ is the identity function. Therefore $\left(f^{-1} \circ f\right)^{\prime}\left(x_{0}\right)=1 \neq 0$ so that $f^{\prime}\left(x_{0}\right) \neq 0$.

Proof of the theorem: The function f is defined on an interval $/$ containing x_{0}. Since f is continuous and invertible, it follows from the Intermediate Value Theorem that f is strictly monotonic on I, the image $f(I)$ is an interval containing y_{0}, and the inverse function f^{-1} is strictly monotonic and continuous on $f(I)$.
We have $\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}=f^{\prime}\left(x_{0}\right)$. Since $f^{\prime}\left(x_{0}\right) \neq 0$, it
follows that $\lim _{x \rightarrow x_{0}} \frac{x-x_{0}}{f(x)-f\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(x_{0}\right)}$. Since f^{-1} is
continuous and strictly monotonic on the interval $f(I)$, we obtain that $\lim _{y \rightarrow y_{0}} f^{-1}(y)=x_{0}$ and $f^{-1}(y) \neq x_{0}$ if $y \neq y_{0}$.
Therefore $\lim _{y \rightarrow y_{0}} \frac{f^{-1}(y)-x_{0}}{y-y_{0}}=\lim _{y \rightarrow y_{0}} \frac{f^{-1}(y)-x_{0}}{f\left(f^{-1}(y)\right)-y_{0}}$
$=\lim _{x \rightarrow x_{0}} \frac{x-x_{0}}{f(x)-f\left(x_{0}\right)}=\frac{1}{f^{\prime}\left(x_{0}\right)}$.

Example

- $f(x)=\arccos x, x \in[-1,1]$.

The function $g(y)=\cos y$ is strictly decreasing on the interval $[0, \pi]$ and maps this interval onto $[-1,1]$. By definition, the function $f(x)=\arccos x$ is the inverse of the restriction of g to $[0, \pi]$. Notice that $g^{\prime}(0)=g^{\prime}(\pi)=0$ and $g^{\prime}(y) \neq 0$ for $y \in(0, \pi)$. It follows that the function f is differentiable on $(-1,1)$ and not differentiable at 1 and -1 . Moreover, for any $x \in(-1,1)$,

$$
f^{\prime}(x)=\frac{1}{g^{\prime}(f(x))}=-\frac{1}{\sin (\arccos x)} .
$$

Let $y=\arccos x$. We have $\sin ^{2} y+\cos ^{2} y=1$. Besides, $\sin y>0$ since $y \in(0, \pi)$. Consequently,
$\sin y=\sqrt{1-\cos ^{2} y}=\sqrt{1-x^{2}}$. Thus $f^{\prime}(x)=-\frac{1}{\sqrt{1-x^{2}}}$.

Exponential and logarithmic functions

Theorem The sequence $x_{n}=\left(1+\frac{1}{n}\right)^{n}, n \in \mathbb{N}$ is increasing and bounded, hence convergent.
The limit is the number $e=2.718281828 \ldots$ ("I' m forming a mnemonic to remember a constant in calculus").
Corollary $\lim _{x \rightarrow 0}(1+x)^{1 / x}=e$.
For any $a>0, a \neq 1$ the exponential function $f(x)=a^{x}$ is strictly monotonic and continuous on \mathbb{R}. It maps \mathbb{R} onto $(0, \infty)$. Therefore the inverse function $g(y)=\log _{a} y$ is strictly monotonic and continuous on $(0, \infty)$. The natural logarithm $\log _{e} y$ is also denoted $\log y$.

Since $(1+h)^{1 / h} \rightarrow e$ as $h \rightarrow 0$, it follows that $h^{-1} \log (1+h)=\log (1+h)^{1 / h} \rightarrow \log e=1$ as $h \rightarrow 0$. In other words, $\left.(\log y)^{\prime}\right|_{y=1}=1$. This implies that $\left.\left(e^{x}\right)^{\prime}\right|_{x=0}=1$.

Examples of differentiation

- $f(x)=e^{x}, \quad x \in \mathbb{R}$.
$\frac{f(x+h)-f(x)}{h}=\frac{e^{x+h}-e^{x}}{h}=\frac{e^{x} e^{h}-e^{x}}{h}=\frac{e^{x}\left(e^{h}-1\right)}{h}$
for all $x, h \in \mathbb{R}$. Therefore for any $x \in \mathbb{R}$,
$f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}=e^{x} f^{\prime}(0)=e^{x}$.
- $f(x)=a^{x}, \quad x \in \mathbb{R}$, where $a>0$.
$f(x)=e^{\log a^{x}}=e^{x \log a}$ so that $f^{\prime}(x)=e^{x \log a \log a=a^{x} \log a . ~}$
- $f(x)=\log x, \quad x \in(0, \infty)$.

Since f is the inverse of the function $g(y)=e^{y}$, we obtain $f^{\prime}(x)=1 / g^{\prime}(\log x)=1 / e^{\log x}=1 / x$ for all $x>0$.

Power rule: general case

Theorem $\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}$ for all $x>0$ and $\alpha \in \mathbb{R}$.
Proof: Let us fix a number $\alpha \in \mathbb{R}$ and consider a function $f(x)=x^{\alpha}, x \in(0, \infty)$. For any $x>0$ we obtain $f(x)=e^{\log \left(x^{\alpha}\right)}=e^{\alpha \log x}=a^{\log x}$, where $a=e^{\alpha}$. Hence $f=h \circ g$, where $g(x)=\log x$, $x>0$ and $h(y)=a^{y}, y \in \mathbb{R}$. By the Chain Rule,

$$
\begin{aligned}
f^{\prime}(x) & =h^{\prime}(g(x)) \cdot g^{\prime}(x)=a^{\log x} \log a \cdot(\log x)^{\prime} \\
& =f(x) \log a \cdot(\log x)^{\prime}=f(x) \cdot \alpha(\log x)^{\prime} \\
& =f(x) \cdot \alpha / x=x^{\alpha} \cdot \alpha / x=\alpha x^{\alpha-1} .
\end{aligned}
$$

