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Lecture 29:
Mean value theorem.



Points of local extremum

Definition. We say that a function f : E → R attains a local
maximum at a point c ∈ E if there exists ε > 0 such that
f (x) ≤ f (c) for all x ∈ E ∩ (c − ε, c + ε). Similarly, f
attains a local minimum at c ∈ E if there exists ε > 0 such
that f (x) ≥ f (c) for all x ∈ E ∩ (c − ε, c + ε).

Theorem (Fermat) Suppose c is a point of local extremum
(maximum or minimum) of a function f . If c is an interior
point of the domain and f is differentiable at c, then f ′(c)=0.

Proof: Assume c is a point of local minimum. Since f is
defined on an open interval containing c, there exists ε > 0
such that f (c + h)− f (c) ≥ 0 for all h, |h| < ε. In the case

h > 0, this implies lim
h→0+

f (c+h)−f (c)
h

≥ 0. In the case h < 0,

this implies lim
h→0−

f (c+h)−f (c)
h

≤ 0. Since both limits are equal

to f ′(c), we conclude that f ′(c) = 0.



Rolle’s Theorem

Theorem Suppose that a, b ∈ R with a < b. If a function
f is continuous on the interval [a, b], differentiable on (a, b),
and if f (a) = f (b), then f ′(c) = 0 for some c ∈ (a, b).

Proof: By the Extreme Value Theorem, the function f

attains its (absolute) maximum M and minimum m on [a, b].
In the case M 6= m, at least one of the extrema is attained at
a point c ∈ (a, b). Then f ′(c) = 0 due to Fermat’s theorem.
In the case M = m, the function f is constant on [a, b].
Then f ′(c) = 0 for all c ∈ (a, b).

Corollary If a polynomial P(x) has k > 1 distinct real roots,
then the polynomial P ′(x) has at least k−1 distinct real roots.

Proof: Let x1, x2, . . . , xk be distinct real roots of P(x)
ordered so that x1 < x2 < · · · < xk . By Rolle’s Theorem, the
derivative P ′(x) has a root in each of k − 1 intervals
(x1, x2), (x2, x3), . . . , (xk−1, xk).



Intermediate Value Theorem for derivatives

Theorem Suppose that a function f is
differentiable on an interval [a, b] with

f ′(a) 6= f ′(b). If y0 is a real number that lies
between f ′(a) and f ′(b), then f ′(x0) = y0 for some
x0 ∈ (a, b).

Remark. Although the function f is differentiable on [a, b],
the derivative f ′ need not be continuous on [a, b]. Hence the
Intermediate Value Theorem for continuous functions may not
apply here.

Corollary If a function f : I → R defined on an

interval I is differentiable everywhere on I , then the
derivative f ′ can have only essential discontinuities.



Proof of the theorem: First we consider the case when
f ′(a) < 0, f ′(b) > 0, and y0 = 0. Since f is differentiable on
[a, b], it is continuous on [a, b]. By the Extreme Value
Theorem, f attains its absolute minimum on [a, b] at some
point x0. Since f ′(a) < 0, we have f (a + h)− f (a) < 0 for
h > 0 sufficiently small. Hence x0 6= a. Similarly, f ′(b) > 0
implies that f (b + h)− f (b) < 0 for h < 0 sufficiently small.
Hence x0 6= b. We obtain that x0 ∈ (a, b). Then f ′(x0) = 0
due to Fermat’s theorem.

Next we consider the case when f ′(a) > 0, f ′(b) < 0, and
y0 = 0. Then the function g = −f is differentiable on [a, b]
with g ′(a) = −f ′(a) < 0 and g ′(b) = −f ′(b) > 0. By the
above, g ′(x0) = 0 for some x0 ∈ (a, b). Then f ′(x0) = 0.

In the general case, we consider a function h(x) = f (x)− y0x .
It is differentiable on [a, b] and h′(x) = f ′(x)− y0 for all
x ∈ [a, b]. It follows that 0 lies between h′(a) and h′(b). By
the above, h′(x0) = 0 for some x0 ∈ (a, b). Then
f ′(x0) = h′(x0) + y0 = y0.



Example

• f (0) = 0, f (x) = x2 sin
1

x
, x 6= 0.

Using the Product Rule and the Chain Rule, we obtain that
the function f is differentiable on R \ {0}. Moreover, for any
x 6= 0,

f ′(x) =

(

x2 sin
1

x

)

′

= (x2)′ sin
1

x
+ x2

(

sin
1

x

)

′

= 2x sin
1

x
+ x2 cos

1

x

(

1

x

)

′

= 2x sin
1

x
− cos

1

x
.

The function f is differentiable at 0 as well. Indeed,
f (h)− f (0)

h
= h sin

1

h
→ 0 as h → 0.

Notice that f is not continuously differentiable on R since
f ′ is not continuous at 0. Namely, lim

x→0+
f ′(x) does not exist.



Mean Value Theorem

Theorem If a function f is continuous on [a, b] and
differentiable on (a, b), then there is c ∈ (a, b) such that
f (b)− f (a) = f ′(c) (b − a).

Proof: Let h0(x) = f (a)
b − x

b − a
+ f (b)

x − a

b − a
, x ∈ R.

By construction, h0(a) = f (a) and h0(b) = f (b). We
observe that the function h0 is differentiable. Moreover,

h′0(x) =
f (b)−f (a)

b−a
for all x ∈ R. It follows that the function

h = f − h0 is continuous on [a, b], differentiable on (a, b),
and satisfies h(a) = h(b) = 0. By Rolle’s Theorem,
h′(c) = 0 for some c ∈ (a, b). We have

h′(c) = f ′(c)− h′0(c) = f ′(c)−
f (b)− f (a)

b − a
.

Thus f ′(c) = (f (b)− f (a))/(b − a) or, equivalently,
f (b)− f (a) = f ′(c) (b − a).



Monotonic functions (revisited)

Theorem Suppose that a function f is continuous on an
interval [a, b] and differentiable on (a, b).
(i) f is nondecreasing on [a, b] if and only if f ′ ≥ 0 on (a, b).
(ii) f is nonincreasing on [a, b] if and only if f ′ ≤ 0 on (a, b).
(iii) If f ′ > 0 on (a, b), then f is strictly increasing on [a, b].
(iv) If f ′ < 0 on (a, b), then f is strictly decreasing on [a, b].
(v) f is constant on [a, b] if and only if f ′ = 0 on (a, b).

Proof: Let a ≤ x1 < x2 ≤ b. By the Mean Value Theorem,
f (x2)− f (x1) = f ′(c) (x2 − x1) for some c ∈ (x1, x2).
Obviously, f ′(c) > 0 if and only if f (x1) < f (x2). Likewise,
f ′(c) ≥ 0 if and only if f (x1) ≤ f (x2). This proves
statements (iii), (iv), and the “if” part of statements (i), (ii).
The “only if” part of statements (i) and (ii) follows from the
Comparison Theorem for limits. Finally, statement (v) follows
from statements (i) and (ii).



Examples

• ex > x + 1 for all x 6= 0.

Consider a function f (x) = ex − x − 1, x ∈ R. This function
is differentiable on R and f ′(x) = ex − 1 for all x ∈ R. We
observe that the derivative f ′ is strictly increasing. Since
f ′(0) = 0, we have f ′(x) < 0 for x < 0 and f ′(x) > 0 for
x > 0. It follows that the function f is strictly decreasing on
(−∞, 0] and strictly increasing on [0,∞). As a consequence,
f (x) > f (0) = 0 for all x 6= 0. Thus ex > x + 1 for x 6= 0.

• log x < x − 1 for all x > 0, x 6= 1.

By the above, ex−1 > (x − 1) + 1 = x for all x 6= 1. Since
the natural logarithm is strictly increasing on (0,∞), it
follows that log ex−1 > log x for x > 0, x 6= 1. Equivalently,
log x < x − 1 for x > 0, x 6= 1.



Problem. Find min
x>0

x x .

The function f (x) = xx is well defined and positive on
(0,∞). Hence

f (x) = e log f (x) = e log x
x

= ex log x

for all x > 0. That is, f (x) = g(h(x)), where h(x) = x log x
and g(y ) = ey . Using the Chain Rule and the Product Rule,
we obtain

f ′(x) = ex log x(x log x)′ = xx
(

(x)′ log x + x(log x)′
)

= xx(log x + 1).

Since the natural logarithm is strictly increasing and
log(1/e) = −1, it follows that f ′(x) < 0 for 0 < x < 1/e
and f ′(x) > 0 for x > 1/e. Hence the function f is strictly
decreasing on (0, 1/e] and strictly increasing on [1/e,∞).
Therefore min

x>0
f (x) = f (1/e) = (1/e)1/e = e−1/e .


