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Advanced Calculus I

Lecture 30:
L’Hôpital’s rule.

Taylor’s formula.



Fermat’s Theorem If a function f is differentiable at an
interior point c of its domain that is a point of local extremum
(maximum or minimum), then f ′(c) = 0.

Rolle’s Theorem If a function f is continuous on a closed
interval [a, b], differentiable on the open interval (a, b), and
if f (a) = f (b), then f ′(c) = 0 for some c ∈ (a, b).

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists c ∈ (a, b)
such that f (b)− f (a) = f ′(c) (b − a).

Theorem Suppose that a function f is continuous on [a, b]
and differentiable on (a, b). Then the following hold.

(i) f is nondecreasing on [a, b] if and only if f ′ ≥ 0 on (a, b).
(ii) f is nonincreasing on [a, b] if and only if f ′ ≤ 0 on (a, b).
(iii) If f ′ > 0 on (a, b), then f is strictly increasing on [a, b].
(iv) If f ′ < 0 on (a, b), then f is strictly decreasing on [a, b].
(v) f is constant on [a, b] if and only if f ′ = 0 on (a, b).



Cauchy’s Mean Value Theorem

Theorem If functions f and g are continuous on
[a, b] and differentiable on (a, b), then there exists

c ∈ (a, b) such that

g ′(c)
(

f (b)− f (a)
)

= f ′(c)
(

g(b)− g(a)
)

.

Remarks. • The usual (Lagrange’s) Mean Value
Theorem is a particular case of this theorem, when

g(x) = x .

• If g(b) 6= g(a) and g ′(c) 6= 0 then

f (b)− f (a)

g(b)− g(a)
=

f ′(c)

g ′(c)
.



Cauchy’s Mean Value Theorem

Theorem If functions f and g are continuous on [a, b] and
differentiable on (a, b), then there exists c ∈ (a, b) such that

g ′(c)
(

f (b)− f (a)
)

= f ′(c)
(

g(b)− g(a)
)

.

Proof: For any x ∈ [a, b], let

h(x) = f (x)
(

g(b)− g(a)
)

− g(x)
(

f (b)− f (a)
)

.

We observe that the function h is continuous on [a, b] and
differentiable on (a, b). Further,

h(a) = f (a)
(

g(b)− g(a)
)

− g(a)
(

f (b)− f (a)
)

= f (a) g(b)− g(a) f (b),

h(b) = f (b)
(

g(b)− g(a)
)

− g(b)
(

f (b)− f (a)
)

= −f (b) g(a) + g(b) f (a).

Hence h(a) = h(b). By Rolle’s Theorem, h′(c) = 0 for some
c ∈ (a, b). It remains to notice that

h′(c) = f ′(c)
(

g(b)− g(a)
)

− g ′(c)
(

f (b)− f (a)
)

.



L’Hôpital’s Rule

L’Hôpital’s Rule helps to compute limits of quotients in
those cases where limit theorems do not apply (because of an
indeterminacy of the form 0/0 or ∞/∞).

Theorem Let a be either a real number or −∞ or +∞.
Let I be an open interval such that either a ∈ I or a is an
endpoint of I . Suppose that functions f and g are
differentiable on I and that g(x), g ′(x) 6= 0 for x ∈ I \ {a}.
Suppose further that

lim
x→a

x∈I

f (x) = lim
x→a

x∈I

g(x) = A,

where A = 0 or ±∞. If the limit lim
x→a

x∈I

f ′(x)/g ′(x) exists

(finite or infinite), then

lim
x→a

x∈I

f (x)

g(x)
= lim

x→a

x∈I

f ′(x)

g ′(x)
.



Remark. In fact, the theorem includes several similar rules
corresponding to various kinds of limits (limx→a+, limx→a−,
limx→a for a ∈ R, limx→+∞, limx→−∞) and the two types of
indeterminacy (0/0 and ∞/∞).

Proof in the case lim
x→a+

0/0: We extend f and g to I ∪ {a}

by letting f (a) = g(a) = 0. By hypothesis, f and g are
continuous on I ∪ {a} and differentiable on I . By the Cauchy
Mean Value Theorem, for any x ∈ I there exists cx ∈ (a, x)
such that

g ′(cx)
(

f (x)− f (a)
)

= f ′(cx)
(

g(x)− g(a)
)

.

That is, g ′(cx)f (x) = f ′(cx)g(x). Since g(cx), g
′(cx) 6= 0,

we obtain f (x)/g(x) = f ′(cx)/g
′(cx). Since cx ∈ (a, x), we

have cx → a+ as x → a+. It follows that

lim
x→a+

f (x)

g(x)
= lim

x→a+

f ′(cx)

g ′(cx)
= lim

c→a+

f ′(c)

g ′(c)
.



Examples

• lim
x→0

1− cos x

x2
.

The functions f (x) = 1− cos x and g(x) = x2 are infinitely
differentiable on R. We have lim

x→0
f (x) = f (0) = 0 and

lim
x→0

g(x) = g(0) = 0.

Further, f ′(x) = sin x and g ′(x) = 2x . We obtain
lim
x→0

f ′(x) = f ′(0) = 0 and lim
x→0

g ′(x) = g ′(0) = 0.

Even further, f ′′(x) = cos x and g ′′(x) = 2. We obtain
lim
x→0

f ′′(x) = f ′′(0) = 1 and lim
x→0

g ′′(x) = g ′′(0) = 2.

It follows that lim
x→0

f ′′(x)/g ′′(x) = 1/2.

By l’Hôpital’s Rule, lim
x→0

f ′(x)/g ′(x) = 1/2. Applying

l’Hôpital’s Rule once again, we obtain lim
x→0

f (x)/g(x) = 1/2.



Examples

• lim
x→0+

xα log x and lim
x→+∞

xα log x , where α 6= 0.

We have lim
x→0+

log x = −∞ and lim
x→+∞

log x = +∞.

Besides, lim
x→0+

x−α = 0 if α < 0 and +∞ if α > 0.

Since 1/x → 0+ as x → +∞, we obtain that
lim

x→+∞

x−α = lim
x→0+

xα.

It follows that lim
x→0+

xα log x = −∞ if α < 0 and

lim
x→+∞

xα log x = +∞ if α > 0.



Examples

• lim
x→0+

xα log x and lim
x→+∞

xα log x , where α 6= 0.

Further, we have xα log x = f (x)/g(x), where the functions
f (x) = log x and g(x) = x−α are infinitely differentiable on
(0,∞). For any x > 0 we obtain f ′(x) = 1/x and
g ′(x) = − αx−α−1. Hence f ′(x)/g ′(x) = − α−1xα for all
x > 0. Therefore in the case α < 0 we have
lim

x→0+
f ′(x)/g ′(x) = +∞ and lim

x→+∞

f ′(x)/g ′(x) = 0.

In the case α > 0, the two limits are interchanged.

By l’Hôpital’s Rule, lim
x→0+

f (x)/g(x) = 0 if α > 0 and

lim
x→+∞

f (x)/g(x) = 0 if α < 0.



Taylor’s formula

Theorem Let n ∈ N and I ⊂ R be an open interval. If a
function f : I → R is n+ 1 times differentiable on I , then for
each pair of points x , x0 ∈ I there is a point c between x and
x0 such that

f (x) = f (x0) +
n

∑

k=1

f (k)(x0)

k!
(x − x0)

k +
f (n+1)(c)

(n + 1)!
(x − x0)

n+1.

Remark. The function

P f ,x0
n

(x) = f (x0) +
f ′(x0)

1!
(x − x0) + · · ·+

f (n)(x0)

n!
(x − x0)

n

is a polynomial of degree at most n. It is called the Taylor
polynomial of order n for the function f centered at x0. One
can check that P f ,x0

n
(x0) = f (x0) and (P f ,x0

n
)(k)(x0) = f (k)(x0)

for 1 ≤ k ≤ n. Taylor’s formula provides information on the
remainder R f ,x0

n
= f − P f ,x0

n
.



Taylor’s formula

Theorem Let n ∈ N and I ⊂ R be an open interval. If a
function f : I → R is n+ 1 times differentiable on I , then for
each pair of points x , x0 ∈ I there is a point c between x and
x0 such that

f (x) = f (x0) +

n
∑

k=1

f (k)(x0)

k!
(x − x0)

k +
f (n+1)(c)

(n + 1)!
(x − x0)

n+1.

Remark. If the function f is infinitely differentiable at x0, the
power series

f (x0) +
f ′(x0)

1!
(x − x0) + · · ·+

f (n)(x0)

n!
(x − x0)

n + . . .

is called the Taylor series of f at the point x0. The Taylor
polynomials P f ,x0

n
are partial sums of this series. For any

particular value of x , the series may or may not converge.
In case of convergence, the sum may or may not be f (x).



Proof of the theorem: Let us fix x ∈ I and define functions

F (t) =
(x−t)n+1

(n + 1)!
and G (t) = f (x)−f (t)−

n
∑

k=1

f (k)(t)

k!
(x−t)k .

The function F is infinitely differentiable on R. The function
G is defined and differentiable on I . By the Cauchy Mean
Value Theorem, for every x0 ∈ I , x0 6= x , there exists a point
c between x0 and x such that

G ′(c)
(

F (x)− F (x0)
)

= F ′(c)
(

G (x)− G (x0)
)

.

Note that the latter follows both in the case x0 < x and in
the case x < x0. Clearly, F (x) = G (x) = 0. Further,

d

dt

(

− f (k)(t)
k!

(x − t)k
)

= f (k)(t)
(k−1)!

(x − t)k−1 − f (k+1)(t)
k!

(x − t)k .

Summing up over k from 1 to n, we obtain that

G ′(t) = − f (n+1)(t)
n!

(x−t)n. Finally, F ′(t) = − (x−t)n

n!
so that

G ′(t)/F ′(t) = f (n+1)(t) for t 6= x . It follows that
G (x0) = f (n+1)(c) F (x0), which implies Taylor’s formula.



Examples

• (1− x)α > 1−αx for all x ∈ (0, 1) and α > 1.

For any α > 0 the function f (x) = (1− x)α is infinitely
differentiable on (−∞, 1). We have f ′(x) = − α(1− x)α−1

and f ′′(x) = α(α− 1)(1− x)α−2 for all x < 1. Note that
f (0) = 1 and f ′(0) = −α. By Taylor’s formula, for any
x ∈ (0, 1) we have

(1− x)α = 1− αx +
α(α− 1)(1− c)α−2

2!
x2,

where 0 < c < x . If α > 1 then
α(α− 1)(1− c)α−2

2!
x2 > 0

and the inequality follows.



Examples

• (1− x)α < 1− αx +
α(α− 1)

2
x2 for all

x ∈ (0, 1) and α > 2.

For any α > 0 the function f (x) = (1− x)α is infinitely
differentiable on (−∞, 1). By Taylor’s formula, for any
x ∈ (0, 1) we have

(1− x)α = 1− αx +
α(α− 1)

2
x2 + R(x),

where R(x) = f
(3)(c)
3!

x3 = − 1
3!
α(α− 1)(α− 2)(1− c)α−3x3

for some c ∈ (0, x). If α > 2 then R(x) < 0 and the
inequality follows.



Examples

• ex = 1 + x +
x2

2!
+ . . .+

xn

n!
+ . . .

The function f (x) = ex is differentiable on R and f ′ = f

everywhere on R. It follows by induction that f is infinitely
differentiable and f (n)(x) = ex for all n ∈ N and x ∈ R.
In particular, f (n)(0) = 1 for all n ∈ N. Hence the above
series is the Taylor series of f at 0. Consider a remainder

Rn(x) = ex − 1− x −
x2

2!
− . . .−

xn

n!
.

By Taylor’s formula, Rn(x) =
f
(n+1)(c)
(n+1)!

xn+1 = ec

(n+1)!
xn+1,

where c = c(n, x) lies between 0 and x . For any fixed x ,
the remainder converges to 0 as n → ∞.


