MATH 409
Advanced Calculus I

Lecture 30:
L'Hôpital's rule.
Taylor's formula.

Fermat's Theorem If a function f is differentiable at an interior point c of its domain that is a point of local extremum (maximum or minimum), then $f^{\prime}(c)=0$.

Rolle's Theorem If a function f is continuous on a closed interval $[a, b]$, differentiable on the open interval (a, b), and if $f(a)=f(b)$, then $f^{\prime}(c)=0$ for some $c \in(a, b)$.

Mean Value Theorem If a function f is continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that $f(b)-f(a)=f^{\prime}(c)(b-a)$.

Theorem Suppose that a function f is continuous on $[a, b]$ and differentiable on (a, b). Then the following hold.
(i) f is nondecreasing on $[a, b]$ if and only if $f^{\prime} \geq 0$ on (a, b).
(ii) f is nonincreasing on $[a, b]$ if and only if $f^{\prime} \leq 0$ on (a, b).
(iii) If $f^{\prime}>0$ on (a, b), then f is strictly increasing on $[a, b]$.
(iv) If $f^{\prime}<0$ on (a, b), then f is strictly decreasing on $[a, b]$.
(v) f is constant on $[a, b]$ if and only if $f^{\prime}=0$ on (a, b).

Cauchy's Mean Value Theorem

Theorem If functions f and g are continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
g^{\prime}(c)(f(b)-f(a))=f^{\prime}(c)(g(b)-g(a))
$$

Remarks. - The usual (Lagrange's) Mean Value Theorem is a particular case of this theorem, when $g(x)=x$.

- If $g(b) \neq g(a)$ and $g^{\prime}(c) \neq 0$ then

$$
\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}
$$

Cauchy's Mean Value Theorem

Theorem If functions f and g are continuous on $[a, b]$ and differentiable on (a, b), then there exists $c \in(a, b)$ such that

$$
g^{\prime}(c)(f(b)-f(a))=f^{\prime}(c)(g(b)-g(a)) .
$$

Proof: For any $x \in[a, b]$, let

$$
h(x)=f(x)(g(b)-g(a))-g(x)(f(b)-f(a)) .
$$

We observe that the function h is continuous on $[a, b]$ and differentiable on (a, b). Further,

$$
\begin{aligned}
h(a) & =f(a)(g(b)-g(a))-g(a)(f(b)-f(a)) \\
& =f(a) g(b)-g(a) f(b), \\
h(b) & =f(b)(g(b)-g(a))-g(b)(f(b)-f(a)) \\
& =-f(b) g(a)+g(b) f(a) .
\end{aligned}
$$

Hence $h(a)=h(b)$. By Rolle's Theorem, $h^{\prime}(c)=0$ for some $c \in(a, b)$. It remains to notice that

$$
h^{\prime}(c)=f^{\prime}(c)(g(b)-g(a))-g^{\prime}(c)(f(b)-f(a)) .
$$

L'Hôpital's Rule

L'Hôpital's Rule helps to compute limits of quotients in those cases where limit theorems do not apply (because of an indeterminacy of the form $0 / 0$ or ∞ / ∞).

Theorem Let a be either a real number or $-\infty$ or $+\infty$. Let I be an open interval such that either $a \in I$ or a is an endpoint of l. Suppose that functions f and g are differentiable on $/$ and that $g(x), g^{\prime}(x) \neq 0$ for $x \in I \backslash\{a\}$. Suppose further that

$$
\lim _{\substack{x \rightarrow a \\ x \in I}} f(x)=\lim _{\substack{x \rightarrow I \\ x \in I}} g(x)=A,
$$

where $A=0$ or $\pm \infty$. If the limit $\lim _{\substack{x \rightarrow a \\ x \in I}} f^{\prime}(x) / g^{\prime}(x)$ exists
(finite or infinite), then

$$
\lim _{\substack{x \rightarrow a \\ x \in I}} \frac{f(x)}{g(x)}=\lim _{\substack{x \rightarrow a \\ x \in I}} \frac{f^{\prime}(x)}{g^{\prime}(x)} .
$$

Remark. In fact, the theorem includes several similar rules corresponding to various kinds of limits ($\lim _{x \rightarrow a+}, \lim _{x \rightarrow a-}$, $\lim _{x \rightarrow a}$ for $\left.a \in \mathbb{R}, \quad \lim _{x \rightarrow+\infty}, \lim _{x \rightarrow-\infty}\right)$ and the two types of indeterminacy ($0 / 0$ and ∞ / ∞).

Proof in the case $\lim _{x \rightarrow a+} 0 / 0$: We extend f and g to $I \cup\{a\}$ by letting $f(a)=g(a)=0$. By hypothesis, f and g are continuous on $I \cup\{a\}$ and differentiable on I. By the Cauchy Mean Value Theorem, for any $x \in I$ there exists $c_{x} \in(a, x)$ such that

$$
g^{\prime}\left(c_{x}\right)(f(x)-f(a))=f^{\prime}\left(c_{x}\right)(g(x)-g(a))
$$

That is, $g^{\prime}\left(c_{x}\right) f(x)=f^{\prime}\left(c_{x}\right) g(x)$. Since $g\left(c_{x}\right), g^{\prime}\left(c_{x}\right) \neq 0$, we obtain $f(x) / g(x)=f^{\prime}\left(c_{x}\right) / g^{\prime}\left(c_{x}\right)$. Since $c_{x} \in(a, x)$, we have $c_{x} \rightarrow a+$ as $x \rightarrow a+$. It follows that

$$
\lim _{x \rightarrow a+} \frac{f(x)}{g(x)}=\lim _{x \rightarrow a+} \frac{f^{\prime}\left(c_{x}\right)}{g^{\prime}\left(c_{x}\right)}=\lim _{c \rightarrow a+} \frac{f^{\prime}(c)}{g^{\prime}(c)} .
$$

Examples

- $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.

The functions $f(x)=1-\cos x$ and $g(x)=x^{2}$ are infinitely differentiable on \mathbb{R}. We have $\lim _{x \rightarrow 0} f(x)=f(0)=0$ and $\lim _{x \rightarrow 0} g(x)=g(0)=0$.
Further, $f^{\prime}(x)=\sin x$ and $g^{\prime}(x)=2 x$. We obtain $\lim _{x \rightarrow 0} f^{\prime}(x)=f^{\prime}(0)=0$ and $\lim _{x \rightarrow 0} g^{\prime}(x)=g^{\prime}(0)=0$.
Even further, $f^{\prime \prime}(x)=\cos x$ and $g^{\prime \prime}(x)=2$. We obtain $\lim _{x \rightarrow 0} f^{\prime \prime}(x)=f^{\prime \prime}(0)=1$ and $\lim _{x \rightarrow 0} g^{\prime \prime}(x)=g^{\prime \prime}(0)=2$.
It follows that $\lim _{x \rightarrow 0} f^{\prime \prime}(x) / g^{\prime \prime}(x)=1 / 2$.
By l'Hôpital's Rule, $\lim _{x \rightarrow 0} f^{\prime}(x) / g^{\prime}(x)=1 / 2$. Applying I'Hôpital's Rule once again, we obtain $\lim _{x \rightarrow 0} f(x) / g(x)=1 / 2$.

Examples

- $\lim _{x \rightarrow 0+} x^{\alpha} \log x$ and $\lim _{x \rightarrow+\infty} x^{\alpha} \log x$, where $\alpha \neq 0$.

We have $\lim _{x \rightarrow 0+} \log x=-\infty$ and $\lim _{x \rightarrow+\infty} \log x=+\infty$.
Besides, $\lim _{x \rightarrow 0+} x^{-\alpha}=0$ if $\alpha<0$ and $+\infty$ if $\alpha>0$.
Since $1 / x \rightarrow 0+$ as $x \rightarrow+\infty$, we obtain that $\lim _{x \rightarrow+\infty} x^{-\alpha}=\lim _{x \rightarrow 0+} x^{\alpha}$.
It follows that $\lim _{x \rightarrow 0+} x^{\alpha} \log x=-\infty$ if $\alpha<0$ and $\lim _{x \rightarrow+\infty} x^{\alpha} \log x=+\infty$ if $\alpha>0$.

Examples

- $\lim _{x \rightarrow 0+} x^{\alpha} \log x$ and $\lim _{x \rightarrow+\infty} x^{\alpha} \log x$, where $\alpha \neq 0$.

Further, we have $x^{\alpha} \log x=f(x) / g(x)$, where the functions $f(x)=\log x$ and $g(x)=x^{-\alpha}$ are infinitely differentiable on $(0, \infty)$. For any $x>0$ we obtain $f^{\prime}(x)=1 / x$ and $g^{\prime}(x)=-\alpha x^{-\alpha-1}$. Hence $f^{\prime}(x) / g^{\prime}(x)=-\alpha^{-1} x^{\alpha}$ for all $x>0$. Therefore in the case $\alpha<0$ we have $\lim _{x \rightarrow 0+} f^{\prime}(x) / g^{\prime}(x)=+\infty$ and $\lim _{x \rightarrow+\infty} f^{\prime}(x) / g^{\prime}(x)=0$. In the case $\alpha>0$, the two limits are interchanged.

By l'Hôpital's Rule, $\lim _{x \rightarrow 0+} f(x) / g(x)=0$ if $\alpha>0$ and $\lim _{x \rightarrow+\infty} f(x) / g(x)=0$ if $\alpha<0$.

Taylor's formula

Theorem Let $n \in \mathbb{N}$ and $I \subset \mathbb{R}$ be an open interval. If a function $f: I \rightarrow \mathbb{R}$ is $n+1$ times differentiable on I, then for each pair of points $x, x_{0} \in I$ there is a point c between x and x_{0} such that

$$
f(x)=f\left(x_{0}\right)+\sum_{k=1}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Remark. The function

$$
P_{n}^{f, x_{0}}(x)=f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}
$$

is a polynomial of degree at most n. It is called the Taylor polynomial of order n for the function f centered at x_{0}. One can check that $P_{n}^{f, x_{0}}\left(x_{0}\right)=f\left(x_{0}\right)$ and $\left(P_{n}^{f, x_{0}}\right)^{(k)}\left(x_{0}\right)=f^{(k)}\left(x_{0}\right)$ for $1 \leq k \leq n$. Taylor's formula provides information on the remainder $R_{n}^{f, x_{0}}=f-P_{n}^{f, x_{0}}$.

Taylor's formula

Theorem Let $n \in \mathbb{N}$ and $I \subset \mathbb{R}$ be an open interval. If a function $f: I \rightarrow \mathbb{R}$ is $n+1$ times differentiable on I, then for each pair of points $x, x_{0} \in I$ there is a point c between x and x_{0} such that

$$
f(x)=f\left(x_{0}\right)+\sum_{k=1}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+\frac{f^{(n+1)}(c)}{(n+1)!}\left(x-x_{0}\right)^{n+1} .
$$

Remark. If the function f is infinitely differentiable at x_{0}, the power series

$$
f\left(x_{0}\right)+\frac{f^{\prime}\left(x_{0}\right)}{1!}\left(x-x_{0}\right)+\cdots+\frac{f^{(n)}\left(x_{0}\right)}{n!}\left(x-x_{0}\right)^{n}+\ldots
$$

is called the Taylor series of f at the point x_{0}. The Taylor polynomials $P_{n}^{f, x_{0}}$ are partial sums of this series. For any particular value of x, the series may or may not converge. In case of convergence, the sum may or may not be $f(x)$.

Proof of the theorem: Let us fix $x \in I$ and define functions

$$
F(t)=\frac{(x-t)^{n+1}}{(n+1)!} \text { and } G(t)=f(x)-f(t)-\sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!}(x-t)^{k}
$$

The function F is infinitely differentiable on \mathbb{R}. The function G is defined and differentiable on I. By the Cauchy Mean Value Theorem, for every $x_{0} \in I, x_{0} \neq x$, there exists a point c between x_{0} and x such that

$$
G^{\prime}(c)\left(F(x)-F\left(x_{0}\right)\right)=F^{\prime}(c)\left(G(x)-G\left(x_{0}\right)\right) .
$$

Note that the latter follows both in the case $x_{0}<x$ and in the case $x<x_{0}$. Clearly, $F(x)=G(x)=0$. Further,

$$
\frac{d}{d t}\left(-\frac{f^{(k)}(t)}{k!}(x-t)^{k}\right)=\frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1}-\frac{f^{(k+1)}(t)}{k!}(x-t)^{k} .
$$

Summing up over k from 1 to n, we obtain that $G^{\prime}(t)=-\frac{f^{(n+1)}(t)}{n!}(x-t)^{n}$. Finally, $F^{\prime}(t)=-\frac{(x-t)^{n}}{n!}$ so that $G^{\prime}(t) / F^{\prime}(t)=f^{(n+1)}(t)$ for $t \neq x$. It follows that $G\left(x_{0}\right)=f^{(n+1)}(c) F\left(x_{0}\right)$, which implies Taylor's formula.

Examples

- $(1-x)^{\alpha}>1-\alpha x$ for all $x \in(0,1)$ and $\alpha>1$.

For any $\alpha>0$ the function $f(x)=(1-x)^{\alpha}$ is infinitely differentiable on $(-\infty, 1)$. We have $f^{\prime}(x)=-\alpha(1-x)^{\alpha-1}$ and $f^{\prime \prime}(x)=\alpha(\alpha-1)(1-x)^{\alpha-2}$ for all $x<1$. Note that $f(0)=1$ and $f^{\prime}(0)=-\alpha$. By Taylor's formula, for any $x \in(0,1)$ we have

$$
(1-x)^{\alpha}=1-\alpha x+\frac{\alpha(\alpha-1)(1-c)^{\alpha-2}}{2!} x^{2}
$$

where $0<c<x$. If $\alpha>1$ then $\frac{\alpha(\alpha-1)(1-c)^{\alpha-2}}{2!} x^{2}>0$ and the inequality follows.

Examples

$$
\begin{aligned}
& \text { - }(1-x)^{\alpha}<1-\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2} \text { for all } \\
& x \in(0,1) \text { and } \alpha>2
\end{aligned}
$$

For any $\alpha>0$ the function $f(x)=(1-x)^{\alpha}$ is infinitely differentiable on $(-\infty, 1)$. By Taylor's formula, for any $x \in(0,1)$ we have

$$
(1-x)^{\alpha}=1-\alpha x+\frac{\alpha(\alpha-1)}{2} x^{2}+R(x),
$$

where $R(x)=\frac{f^{(3)}(c)}{3!} x^{3}=-\frac{1}{3!} \alpha(\alpha-1)(\alpha-2)(1-c)^{\alpha-3} x^{3}$ for some $c \in(0, x)$. If $\alpha>2$ then $R(x)<0$ and the inequality follows.

Examples

- $e^{x}=1+x+\frac{x^{2}}{2!}+\ldots+\frac{x^{n}}{n!}+\ldots$

The function $f(x)=e^{x}$ is differentiable on \mathbb{R} and $f^{\prime}=f$ everywhere on \mathbb{R}. It follows by induction that f is infinitely differentiable and $f^{(n)}(x)=e^{x}$ for all $n \in \mathbb{N}$ and $x \in \mathbb{R}$. In particular, $f^{(n)}(0)=1$ for all $n \in \mathbb{N}$. Hence the above series is the Taylor series of f at 0 . Consider a remainder

$$
R_{n}(x)=e^{x}-1-x-\frac{x^{2}}{2!}-\ldots-\frac{x^{n}}{n!} .
$$

By Taylor's formula, $R_{n}(x)=\frac{f(n+1)(c)}{(n+1)!} x^{n+1}=\frac{e^{c}}{(n+1)!} x^{n+1}$, where $c=c(n, x)$ lies between 0 and x. For any fixed x, the remainder converges to 0 as $n \rightarrow \infty$.

