MATH 409

Advanced Calculus |
Lecture 30:

L’Hopital’s rule.
Taylor’s formula.



Fermat’s Theorem If a function f is differentiable at an
interior point ¢ of its domain that is a point of local extremum
(maximum or minimum), then f’(c) = 0.

Rolle’s Theorem If a function f is continuous on a closed
interval [a, b], differentiable on the open interval (a, b), and
if f(a) = f(b), then f'(c) =0 for some c € (a, b).

Mean Value Theorem If a function f is continuous on
[a, b] and differentiable on (a, b), then there exists ¢ € (a, b)
such that f(b) — f(a) = f'(c) (b — a).

Theorem Suppose that a function f is continuous on [a, b]
and differentiable on (a, b). Then the following hold.

(i) f is nondecreasing on [a, b] if and only if ' >0 on (a, b).
(ii) f is nonincreasing on [a, b] if and only if " <0 on (a, b).
(iii) If f" >0 on (a,b), then f is strictly increasing on |[a, b].
(iv) If /<0 on (a,b), then f is strictly decreasing on [a, b].
(v) f is constant on [a, b] if and only if f" =0 on (a,b).



Cauchy’s Mean Value Theorem

Theorem If functions f and g are continuous on

[a, b] and differentiable on (a, b), then there exists
c € (a, b) such that

g'(c) (f(b) — f(a)) = f'(c) (g(b) — g(a)).

Remarks. e The usual (Lagrange's) Mean Value
Theorem is a particular case of this theorem, when
g(x) = x.
o If g(b) # g(a) and g'(c) # 0 then

f(b) —f(a) f'(c)

g(b) —g(a) g'(c)




Cauchy’s Mean Value Theorem

Theorem If functions f and g are continuous on [a, b] and
differentiable on (a, b), then there exists ¢ € (a, b) such that

g'(c) (F(b) — f(a)) = f'(c) (g(b) — &(a))-
Proof: For any x € [a, b], let
h(x) = f(x) (g(b) — &(a)) — &(x) (f(b) — £(a)).

We observe that the function h is continuous on [a, b] and
differentiable on (a, b). Further,

h(a) = f(a) (g(b) — &(a)) — g(a) (f(b) — (a))
= f(a) g(b) — g(a) f(b),
h(b) = f(b) (g(b) — &(a)) — &(b) (f(b) — f(a))

g
= —f(b) g(a) + g(b) f(a).
Hence h(a) = h(b). By Rolle’s Theorem, h'(c) =0 for some
€ (a,b). It remains to notice that

H(c) = f'(c) (g(b) — &(a)) — &'(c) (£(b) — £(a)).



L'Hopital’s Rule

L’Hopital’s Rule helps to compute limits of quotients in
those cases where limit theorems do not apply (because of an
indeterminacy of the form 0/0 or co/o00).

Theorem Let a be either a real number or —oo or 4o00.
Let / be an open interval such that either a € | or a is an
endpoint of /. Suppose that functions f and g are
differentiable on / and that g(x),g’(x) # 0 for x € I'\ {a}.
Suppose further that

lim f(x) = limg(x) = A,

xel xel
where A =0 or +o0. If the limit lim f'(x)/g'(x) exists
xel

(finite or infinite), then
), Fl)

=1 .
i 8 iigx)




Remark. In fact, the theorem includes several similar rules
corresponding to various kinds of limits (lim,_,,¢, lim,_,_,
limy_,, for a€ R, lim,, o, lim, o) and the two types of
indeterminacy (0/0 and co/00).

Proof in the case lim 0/0: We extend f and g to /U {a}

X—ra+
by letting f(a) = g(a) = 0. By hypothesis, f and g are
continuous on /U {a} and differentiable on /. By the Cauchy
Mean Value Theorem, for any x € | there exists ¢, € (a, x)
such that

g'(c) (f(x) — f(a)) = f'(c) (g(x) — &(a)).

That is, g'(c)f(x) = f'(cx)g(x). Since g(cy),g'(cx) #0,
we obtain f(x)/g(x) = f'(cx)/g'(c). Since ¢, € (a,x), we
have ¢, — a+ as x — a+. It follows that




Examples

.1 —cosx

o |im—.
x—0 X2

The functions f(x) =1 —cosx and g(x) = x? are infinitely
differentiable on R. We have Iirrz) f(x)=f(0)=0 and
X—>

lim g(x) = g(0) = 0.
Further, f'(x) = sinx and g’(x) = 2x. We obtain
lim f'(x) = f’(0) =0 and lim g'(x) = g'(0) = 0.
x—0 x—0
Even further, f”(x) = cosx and g”(x) =2. We obtain
lim f”(x) = f"(0) =1 and lim g”"(x) = g"(0) = 2.
x—0 x—0
It follows that Iim0 f"(x)/g"(x) =1/2.
X—r
By I'Hopital’s Rule, Iim0 f'(x)/g'(x) =1/2. Applying
X—
I'Hopital’s Rule once again, we obtain Iim0 f(x)/g(x)=1/2.
X—



Examples

e lim x“logx and Ilim x“logx, where a # 0.
x—0+ X—4-00

We have |im logx = —o0 and I|im logx = + o0.
x—0+ X——+00

Besides, Iim x =0 if « <0 and +c0 if a > 0.

x—0+

Since 1/x — 0+ as x — +00, we obtain that
lim x=® = lim x°.
X——+00 x—0+

It follows that lim x“logx = —oo0 if a <0 and
x—0+

lim x“logx =400 if a>0.
X——400



Examples

e lim x“logx and Ilim x“logx, where a # 0.
x—0+ X—>=+00

Further, we have x®logx = f(x)/g(x), where the functions
f(x) =logx and g(x) =x"“ are infinitely differentiable on
(0,00). For any x > 0 we obtain f'(x) =1/x and

g'(x) = —ax 1. Hence f'(x)/g'(x) = —a x> for all
x > 0. Therefore in the case av < 0 we have

lim F()/g(x) = 00 and_lim_(x)/g'(x) =

In the case a > 0, the two limits are interchanged.
By I'Hopital’s Rule, |in01+ f(x)/g(x)=0 if >0 and
X—
lim f(x)/g(x)=0 if a<0.

X——400



Taylor’s formula

Theorem Let n€ N and / C R be an open interval. If a
function f : | — R is n+ 1 times differentiable on /, then for
each pair of points x,xp € | there is a point ¢ between x and
Xp such that

k f(k)(XO) k f("H)(C) n+1
f(x) = f(x0)+kz_; ) 0"
Remark. The function
f/(Xo) f(n) (Xo)

Proo(x) = f(xo) +

(X—X0)+"'+

11 (= )"
is a polynomial of degree at most n. It is called the Taylor
polynomial of order n for the function f centered at x5. One
can check that Pf*(xo) = f(xo) and (P/0)K)(x) = (K (xg)
for 1 < k < n. Taylor's formula provides information on the
remainder Rf* = f — pf>xo,

n!



Taylor’s formula

Theorem Let n€ N and / C R be an open interval. If a
function f : | — R is n+ 1 times differentiable on /, then for
each pair of points x,xp € | there is a point ¢ between x and
Xp such that

£(k)

n X0 . (n+1) (¢
F(x)=flx)+ Y k(! L — o)+ -9

m(x _ XO)n+1-

Remark. If the function f is infinitely differentiable at xg, the
power series

Flxo) + f0a)

n!

f'(x0)
1!

is called the Taylor series of f at the point xq. The Taylor
polynomials P?~0 are partial sums of this series. For any
particular value of x, the series may or may not converge.
In case of convergence, the sum may or may not be f(x).

(X—X0)+"'+

(x —x0)"+ ...



Proof of the theorem: Let us fix x € | and define functions

)l " F0
At = ((n +)1)! k!( )

The function F is infinitely differentiable on R. The function
G is defined and differentiable on /. By the Cauchy Mean
Value Theorem, for every xp € I, xp # x, there exists a point
¢ between xp and x such that

G'(c) (F(x) — F(x0)) = F'(c) (G(x) — G(x)).

Note that the latter follows both in the case xg < x and in
the case x < xg. Clearly, F(x) = G(x) =0. Further,

F(k) F(k) _ F(k+1)
i (-0 04) = G - 4 = - o

and G(t) = f(x)—f(t)— (x—t)k.

k=1

Summing up over k from 1 to n, we obtain that
G'(t)= — M(x—t)”. Finally, F'(t) = — (X;—,t)n so that

n!
G'(t)/F'(t) = f(rt1(t) for t # x. It follows that
G(xo) = F("*1)(c) F(xp), which implies Taylor's formula.



Examples

o (1-—x)*>1—ax forall x e (0,1) and o > 1.

For any o > 0 the function f(x) = (1 — x)* is infinitely
differentiable on (—o0,1). We have f/(x) = — (1 —x)*!
and f"(x) = a(a —1)(1 — x)*2 for all x < 1. Note that
f(0) =1 and f’(0) = —a. By Taylor's formula, for any
x € (0,1) we have
—1)(1 — a—2
(1—-x)* = 1—ozx+a(a )él ) x2,
ala—1)(1—c)* 2 ,

where 0 < c < x. If @« > 1 then o x>0

and the inequality follows.



Examples

—1
° (1—X)a<1—OéX+MX2 for all

2
x €(0,1) and o > 2.

For any a > 0 the function f(x) = (1 —x)* is infinitely
differentiable on (—o00,1). By Taylor's formula, for any
x € (0,1) we have

(1-x)*=1-—ax+ w% + R(x),

where R(x) = 553 = —La(a — 1)(a — 2)(1 - ¢)* 33
for some ¢ € (0,x). If @ >2 then R(x) <0 and the

inequality follows.




Examples

2 n

X X
e &F=14+x+—+...+—+...
21 n!

The function f(x) = e* is differentiable on R and ' = f
everywhere on R. It follows by induction that f is infinitely
differentiable and f(")(x) = e~ forall n€ N and x € R.
In particular, f("(0) =1 for all n € N. Hence the above

series is the Taylor series of f at 0. Consider a remainder

2 n

. X X
R.(x) =e _1_X_§_"'_H'
’ (n+1) n c n
By Taylor's formula, R,(x) = f(nﬂ()f) = G

where ¢ = ¢(n, x) lies between 0 and x. For any fixed x,
the remainder converges to 0 as n — oc.



