MATH 409
 Advanced Calculus I

Lecture 31:
 Review for Test 2.

Topics for Test 2

Part III: Continuity

- Topology of the real line
- Limits of functions
- Continuous functions
- Uniform continuity

Thomson/Bruckner/Bruckner: 4.1-4.7, 5.1-5.2, 5.4-5.10

Topics for Test 2

Part IV-a: Differential calculus

- The derivative
- Differentiability theorems
- Mean value theorem
- L'Hôpital's rule
- Taylor's formula

Thomson/Bruckner/Bruckner: 7.1-7.7, 7.9, 7.11-7.13

Topology of the real line

Properties of points relative to a set:

- Interior point (contained in the set along with some ε-neighborhood)
- Exterior point (= interior point for the complement)
- Boundary point (= neither interior nor exterior)
- Limit point ($=$ interior or boundary point)
- Isolated point (the only point in the set among all points in some ε-neighborhood)
- Accumulation point (= limit point and not isolated)

Properties of sets:

- Open set (all points of the set are interior)
- Closed set (contains all of its boundary points)
- Compact set (= closed and bounded)

Continuity

Theorem A function $f: E \rightarrow \mathbb{R}$ is continuous at a point $c \in E$ if and only if for any sequence $\left\{x_{n}\right\}$ of elements of $E, x_{n} \rightarrow c$ as $n \rightarrow \infty$ implies $f\left(x_{n}\right) \rightarrow f(c)$ as $n \rightarrow \infty$.

Theorem Suppose that functions $f, g: E \rightarrow \mathbb{R}$ are both continuous at a point $c \in E$. Then the functions $f+g, f-g$, and $f g$ are also continuous at c. If, additionally, $g(c) \neq 0$, then the function f / g is continuous at c as well.

Extreme Value Theorem If $I=[a, b]$ is a closed, bounded interval of the real line, then any continuous function $f: I \rightarrow \mathbb{R}$ is bounded and attains its extreme values (maximum and minimum) on I.

Intermediate Value Theorem If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous then any number y_{0} that lies between $f(a)$ and $f(b)$ is a value of f, i.e., $y_{0}=f\left(x_{0}\right)$ for some $x_{0} \in[a, b]$.

Theorem Any function continuous on a closed bounded interval $[a, b]$ is also uniformly continuous on $[a, b]$.

Problem. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(-1)=f(0)=f(1)=0$
and $f(x)=\frac{x-1}{x^{2}-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \backslash\{-1,0,1\}$.
(i) Determine all points at which the function f is continuous.
(ii) Is the function f uniformly continuous on the interval $(0,1)$? Is it uniformly continuous on the interval $(1,2)$?

Problem. Consider a function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(-1)=f(0)=f(1)=0$ and $f(x)=\frac{x-1}{x^{2}-1} \sin \frac{1}{x}$ for $x \in \mathbb{R} \backslash\{-1,0,1\}$.
(i) Determine all points at which the function f is continuous.

The polynomial functions $g_{1}(x)=x-1$ and $g_{2}(x)=x^{2}-1$ are continuous on the entire real line. Moreover, $g_{2}(x)=0$ if and only if $x=1$ or -1 . Therefore the quotient $g(x)=g_{1}(x) / g_{2}(x)$ is well defined and continuous on $\mathbb{R} \backslash\{-1,1\}$.
Further, the function $h_{1}(x)=1 / x$ is continuous on $\mathbb{R} \backslash\{0\}$. Since the function $h_{2}(x)=\sin x$ is continuous on \mathbb{R}, the composition function $h(x)=h_{2}\left(h_{1}(x)\right)$ is continuous on $\mathbb{R} \backslash\{0\}$.
Clearly, $f(x)=g(x) h(x)$ for all $x \in \mathbb{R} \backslash\{-1,0,1\}$. It follows that the function f is continuous on $\mathbb{R} \backslash\{-1,0,1\}$.

It remains to determine whether the function f is continuous at points $-1,0$, and 1 . Observe that $g(x)=1 /(x+1)$ for all $x \in \mathbb{R} \backslash\{-1,1\}$. Therefore $g(x) \rightarrow 1$ as $x \rightarrow 0$, $g(x) \rightarrow 1 / 2$ as $x \rightarrow 1$, and $g(x) \rightarrow \pm \infty$ as $x \rightarrow-1 \pm$. Since the function h is continuous at -1 and 1 , we have $h(x) \rightarrow h(-1)=-\sin 1$ as $x \rightarrow-1$ and $h(x) \rightarrow h(1)=\sin 1$ as $x \rightarrow 1$. Note that $\sin 1>0$ since $0<1<\pi / 2$. It follows that $f(x) \rightarrow \mp \infty$ as $x \rightarrow-1 \pm$. In particular, f is discontinuous at -1 .
Further, $f(x) \rightarrow \frac{1}{2} \sin 1$ as $x \rightarrow 1$. Since $f(1)=0$, the function f has a removable discontinuity at 1 .
Finally, the function f is not continuous at 0 since it has no limit at 0 . To be precise, let $x_{n}=(\pi / 2+2 \pi n)^{-1}$ and $y_{n}=(-\pi / 2+2 \pi n)^{-1}$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are two sequences of positive numbers converging to 0 . We have $h\left(x_{n}\right)=1$ and $h\left(y_{n}\right)=-1$ for all $n \in \mathbb{N}$. It follows that $f\left(x_{n}\right) \rightarrow 1$ and $f\left(y_{n}\right) \rightarrow-1$ as $n \rightarrow \infty$. Hence there is no limit of $f(x)$ as $x \rightarrow 0+$.
(ii) Is the function f uniformly continuous on the interval $(0,1)$? Is it uniformly continuous on the interval (1,2)?

Any function uniformly continuous on the open interval $(0,1)$ can be extended to a continuous function on $[0,1]$. As a consequence, such a function has a right-hand limit at 0 . However we already know that the function f has no right-hand limit at 0 . Therefore f is not uniformly continuous on (0,1).
The function f is continuous on $(1,2$] and has a removable singularity at 1 . Changing the value of f at 1 to the limit at 1 , we obtain a function continuous on $[1,2]$. It is known that every function continuous on the closed interval $[1,2]$ is also uniformly continuous on $[1,2]$. Further, any function uniformly continuous on the set [1,2] is also uniformly continuous on its subset (1,2). Since the redefined function coincides with f on (1,2), we conclude that f is uniformly continuous on (1,2).

Differentiability theorems

Theorem If functions f and g are differentiable at a point $c \in \mathbb{R}$, then their sum $f+g$, difference $f-g$, and product $f \cdot g$ are also differentiable at c. Moreover,

$$
\begin{gathered}
(f+g)^{\prime}(c)=f^{\prime}(c)+g^{\prime}(c), \\
(f-g)^{\prime}(c)=f^{\prime}(c)-g^{\prime}(c), \\
(f \cdot g)^{\prime}(c)=f^{\prime}(c) g(c)+f(c) g^{\prime}(c) .
\end{gathered}
$$

If, additionally, $g(c) \neq 0$ then the quotient f / g is also differentiable at c and

$$
\left(\frac{f}{g}\right)^{\prime}(c)=\frac{f^{\prime}(c) g(c)-f(c) g^{\prime}(c)}{(g(c))^{2}}
$$

Theorem If a function f is differentiable at a point $c \in \mathbb{R}$ and a function g is differentiable at $f(c)$, then the composition $g \circ f$ is differentiable at c. Moreover,

$$
(g \circ f)^{\prime}(c)=g^{\prime}(f(c)) \cdot f^{\prime}(c) .
$$

Problem. Find the limit $\lim _{x \rightarrow 0}(1+x)^{1 / x}$.
The function $f(x)=(1+x)^{1 / x}$ is well defined on $(-1,0) \cup(0, \infty)$. Since $f(x)>0$ for all $x>-1, x \neq 0$, a function $g(x)=\log f(x)$ is well defined on $(-1,0) \cup(0, \infty)$ as well. For any $x>-1, x \neq 0$, we have

$$
g(x)=\log (1+x)^{1 / x}=\frac{\log (1+x)}{x} .
$$

Hence $g=h_{1} / h_{2}$, where the functions $h_{1}(x)=\log (1+x)$ and $h_{2}(x)=x$ are continuously differentiable on ($-1, \infty$). Since $h_{1}(0)=h_{2}(0)=0$, it follows that $\lim _{x \rightarrow 0} h_{1}(x)=\lim _{x \rightarrow 0} h_{2}(x)=0$. By l'Hôpital's Rule,

$$
\lim _{x \rightarrow 0} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow 0} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}
$$

assuming the latter limit exists.

Since $h_{1}^{\prime}(0)=\left.(1+x)^{-1}\right|_{x=0}=1$ and $h_{2}^{\prime}(0)=1$, we obtain

$$
\lim _{x \rightarrow 0} \frac{h_{1}(x)}{h_{2}(x)}=\lim _{x \rightarrow 0} \frac{h_{1}^{\prime}(x)}{h_{2}^{\prime}(x)}=\frac{\lim _{x \rightarrow 0} h_{1}^{\prime}(x)}{\lim _{x \rightarrow 0} h_{2}^{\prime}(x)}=\frac{1}{1}=1
$$

Since $f=e^{g}$, the composition of g with a continuous function, it follows that

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} e^{g(x)}=\exp \left(\lim _{x \rightarrow 0} g(x)\right)=e^{1}=e
$$

Problem. Analyze a function $f:(-1, \infty) \rightarrow \mathbb{R}$ defined by $f(0)=e$ and $f(x)=(1+x)^{1 / x}$ for $x>-1, x \neq 0$.

Consider a function $g(x)=\log f(x), x>-1$. If $x \neq 0$, we have $g(x)=\log (1+x) / x$. Therefore g is differentiable on $(-1,0) \cup(0, \infty)$ and $g^{\prime}(x)=\left(\frac{x}{1+x}-\log (1+x)\right) / x^{2}$ for all $x>-1, x \neq 0$.
Now consider another function $h:(-1, \infty) \rightarrow \mathbb{R}$ given by

$$
h(x)=\frac{x}{1+x}-\log (1+x)=1-\frac{1}{1+x}-\log (1+x) .
$$

Note that $h(x)=x^{2} g^{\prime}(x)$ for $x \neq 0$. The function h is differentiable on $(-1, \infty)$ and

$$
h^{\prime}(x)=\frac{1}{(1+x)^{2}}-\frac{1}{1+x} .
$$

We obtain that $h^{\prime}(x)>0$ for $-1<x<0$ and $h^{\prime}(x)<0$ for $x>0$.

It follows that the function h is strictly increasing on ($-1,0$] and strictly decreasing on $[0, \infty)$. Since $h(0)=0$, we obtain that $h(x)<0$ for $x \neq 0$.
Then $g^{\prime}(x)<0$ for $x>-1, x \neq 0$ as well. Therefore the function g is strictly decreasing on $(-1,0)$ and on $(0, \infty)$.
Since the function f is the composition of g with the strictly increasing function $y(x)=e^{x}$, it is also strictly decreasing on $(-1,0)$ and on $(0, \infty)$.
Besides, we have already shown that $\lim _{x \rightarrow 0} f(x)=e$. Since $f(0)=e$, the function f is continuous at 0 . It follows that f is strictly decreasing on $(-1, \infty)$.

Problem. Suppose that a function $p: \mathbb{R} \rightarrow \mathbb{R}$ is locally a polynomial, which means that for every
$c \in \mathbb{R}$ there exists $\varepsilon>0$ such that p coincides with a polynomial on the interval $(c-\varepsilon, c+\varepsilon)$. Prove that p is a polynomial.

For any $c \in \mathbb{R}$ let p_{c} be a polynomial and $\varepsilon_{c}>0$ be a number such that $p(x)=p_{c}(x)$ for all $x \in\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right)$. Consider the set E_{0} of all points $c \in \mathbb{R}$ such that the polynomial p_{c} coincides with p_{0}.

We are going to show that E_{0} is both open and closed. Since there are only two such sets, \mathbb{R} and the empty set, and E_{0} is clearly nonempty $\left(0 \in E_{0}\right)$, it will follow that $E_{0}=\mathbb{R}$.
Consequently, $p=p_{0}$ on the entire real line.

Lemma If two polynomials coincide (as functions) on an open interval, then they are the same.
Proof: Suppose P and Q are two polynomials that coincide on an open interval I. Then the function $P-Q$ coincides with 0 on I. Since $P-Q$ is a polynomial and any nonzero polynomial has only finitely many roots, we conclude that $P-Q=0$. Then the polynomials P and Q are the same.

Claim The set E_{0} is both open and closed.
Proof: Suppose $c \in \mathbb{R}$ and $d \in\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right)$. Then the intervals $I_{c}=\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right)$ and $I_{d}=\left(d-\varepsilon_{d}, d+\varepsilon_{d}\right)$ overlap so that the intersection $I_{c} \cap I_{d}$ is also an open interval. By construction, the function p coincides with p_{c} on I_{c} and with p_{d} on I_{d}. Hence p_{d} coincides with p_{c} on $I_{c} \cap I_{d}$. By Lemma, p_{d} is the same as p_{c}. In the case $c \in E_{0}$, it follows that $\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right) \subset E_{0}$. That is, every point of E_{0} is an interior point. In the case $c \in \partial E_{0}$, we have $d \in E_{0}$ for some $d \in\left(c-\varepsilon_{c}, c+\varepsilon_{c}\right)$. Then $p_{c}=p_{d}=p_{0}$ so that $c \in E_{0}$.

