
MATH 409

Advanced Calculus I

Lecture 31:
Review for Test 2.



Topics for Test 2

Part III: Continuity

• Topology of the real line

• Limits of functions

• Continuous functions

• Uniform continuity

Thomson/Bruckner/Bruckner : 4.1–4.7, 5.1–5.2,

5.4–5.10



Topics for Test 2

Part IV-a: Differential calculus

• The derivative

• Differentiability theorems

• Mean value theorem

• L’Hôpital’s rule

• Taylor’s formula

Thomson/Bruckner/Bruckner : 7.1–7.7, 7.9,
7.11–7.13



Topology of the real line

Properties of points relative to a set:

• Interior point (contained in the set along with some
ε-neighborhood)

• Exterior point (= interior point for the complement)

• Boundary point (= neither interior nor exterior)

• Limit point (= interior or boundary point)

• Isolated point (the only point in the set among all points in
some ε-neighborhood)

• Accumulation point (= limit point and not isolated)

Properties of sets:

• Open set (all points of the set are interior)

• Closed set (contains all of its boundary points)

• Compact set (= closed and bounded)



Continuity

Theorem A function f : E → R is continuous at
a point c ∈ E if and only if for any sequence {xn}
of elements of E , xn → c as n → ∞ implies

f (xn) → f (c) as n → ∞.

Theorem Suppose that functions f , g : E → R

are both continuous at a point c ∈ E . Then the
functions f + g , f − g , and fg are also continuous

at c . If, additionally, g(c) 6= 0, then the function
f /g is continuous at c as well.



Extreme Value Theorem If I = [a, b] is a
closed, bounded interval of the real line, then any

continuous function f : I → R is bounded and
attains its extreme values (maximum and minimum)

on I .

Intermediate Value Theorem If a function
f : [a, b] → R is continuous then any number y0
that lies between f (a) and f (b) is a value of f , i.e.,
y0 = f (x0) for some x0 ∈ [a, b].

Theorem Any function continuous on a closed

bounded interval [a, b] is also uniformly continuous
on [a, b].



Problem. Consider a function f : R → R defined

by f (−1) = f (0) = f (1) = 0

and f (x) =
x − 1

x2 − 1
sin

1

x
for x ∈ R \ {−1, 0, 1}.

(i) Determine all points at which the function f is
continuous.

(ii) Is the function f uniformly continuous on the

interval (0, 1)? Is it uniformly continuous on the
interval (1, 2)?



Problem. Consider a function f : R → R defined by

f (−1) = f (0) = f (1) = 0 and f (x) =
x − 1

x2 − 1
sin

1

x
for x ∈ R \ {−1, 0, 1}.

(i) Determine all points at which the function f is continuous.

The polynomial functions g1(x) = x − 1 and g2(x) = x2 − 1
are continuous on the entire real line. Moreover, g2(x) = 0 if
and only if x = 1 or −1. Therefore the quotient
g(x) = g1(x)/g2(x) is well defined and continuous on
R \ {−1, 1}.

Further, the function h1(x) = 1/x is continuous on R \ {0}.
Since the function h2(x) = sin x is continuous on R, the
composition function h(x) = h2(h1(x)) is continuous on
R \ {0}.

Clearly, f (x) = g(x)h(x) for all x ∈ R \ {−1, 0, 1}. It
follows that the function f is continuous on R \ {−1, 0, 1}.



It remains to determine whether the function f is continuous
at points −1, 0, and 1. Observe that g(x) = 1/(x + 1) for
all x ∈ R \ {−1, 1}. Therefore g(x) → 1 as x → 0,
g(x) → 1/2 as x → 1, and g(x) → ±∞ as x → −1±.
Since the function h is continuous at −1 and 1, we have
h(x) → h(−1) = − sin 1 as x → −1 and
h(x) → h(1) = sin 1 as x → 1. Note that sin 1 > 0 since
0 < 1 < π/2. It follows that f (x) → ∓∞ as x → −1±.
In particular, f is discontinuous at −1.

Further, f (x) → 1

2
sin 1 as x → 1. Since f (1) = 0, the

function f has a removable discontinuity at 1.

Finally, the function f is not continuous at 0 since it has no
limit at 0. To be precise, let xn = (π/2 + 2πn)−1 and
yn = (−π/2 + 2πn)−1 for all n ∈ N. Then {xn} and {yn} are
two sequences of positive numbers converging to 0. We have
h(xn) = 1 and h(yn) = −1 for all n ∈ N. It follows that
f (xn) → 1 and f (yn) → −1 as n → ∞. Hence there is no
limit of f (x) as x → 0+.



(ii) Is the function f uniformly continuous on the interval
(0, 1)? Is it uniformly continuous on the interval (1, 2)?

Any function uniformly continuous on the open interval (0, 1)
can be extended to a continuous function on [0, 1]. As a
consequence, such a function has a right-hand limit at 0.
However we already know that the function f has no
right-hand limit at 0. Therefore f is not uniformly continuous
on (0, 1).

The function f is continuous on (1, 2] and has a removable
singularity at 1. Changing the value of f at 1 to the limit at
1, we obtain a function continuous on [1, 2]. It is known that
every function continuous on the closed interval [1, 2] is also
uniformly continuous on [1, 2]. Further, any function
uniformly continuous on the set [1, 2] is also uniformly
continuous on its subset (1, 2). Since the redefined function
coincides with f on (1, 2), we conclude that f is uniformly
continuous on (1, 2).



Differentiability theorems

Theorem If functions f and g are differentiable at a point
c ∈ R, then their sum f + g , difference f − g , and product
f · g are also differentiable at c. Moreover,

(f + g)′(c) = f ′(c) + g ′(c),

(f − g)′(c) = f ′(c)− g ′(c),

(f · g)′(c) = f ′(c)g(c) + f (c)g ′(c).

If, additionally, g(c) 6= 0 then the quotient f /g is also
differentiable at c and

(

f

g

)

′

(c) =
f ′(c)g(c)− f (c)g ′(c)

(g(c))2
.

Theorem If a function f is differentiable at a point c ∈ R

and a function g is differentiable at f (c), then the
composition g ◦ f is differentiable at c. Moreover,

(g ◦ f )′(c) = g ′(f (c)) · f ′(c).



Problem. Find the limit lim
x→0

(1 + x)1/x .

The function f (x) = (1 + x)1/x is well defined on
(−1, 0) ∪ (0,∞). Since f (x) > 0 for all x > −1, x 6= 0, a
function g(x) = log f (x) is well defined on (−1, 0) ∪ (0,∞)
as well. For any x > −1, x 6= 0, we have

g(x) = log(1 + x)1/x =
log(1 + x)

x
.

Hence g = h1/h2, where the functions h1(x) = log(1 + x)
and h2(x) = x are continuously differentiable on (−1,∞).
Since h1(0) = h2(0) = 0, it follows that
lim
x→0

h1(x) = lim
x→0

h2(x) = 0. By l’Hôpital’s Rule,

lim
x→0

h1(x)

h2(x)
= lim

x→0

h′1(x)

h′
2
(x)

assuming the latter limit exists.



Since h′1(0) = (1 + x)−1|x=0 = 1 and h′2(0) = 1,

we obtain

lim
x→0

h1(x)

h2(x)
= lim

x→0

h′1(x)

h′2(x)
=

lim
x→0

h′1(x)

lim
x→0

h′2(x)
=

1

1
= 1.

Since f = eg , the composition of g with a
continuous function, it follows that

lim
x→0

f (x) = lim
x→0

eg(x) = exp
(

lim
x→0

g(x)
)

= e1 = e.



Problem. Analyze a function f : (−1,∞) → R

defined by f (0) = e and f (x) = (1 + x)1/x for

x > −1, x 6= 0.

Consider a function g(x) = log f (x), x > −1. If x 6= 0, we
have g(x) = log(1 + x)/x . Therefore g is differentiable on
(−1, 0) ∪ (0,∞) and g ′(x) =

(

x

1+x
− log(1 + x)

)

/x2 for all
x > −1, x 6= 0.

Now consider another function h : (−1,∞) → R given by

h(x) =
x

1 + x
− log(1 + x) = 1−

1

1 + x
− log(1 + x).

Note that h(x) = x2g ′(x) for x 6= 0. The function h is
differentiable on (−1,∞) and

h′(x) =
1

(1 + x)2
−

1

1 + x
.

We obtain that h′(x) > 0 for −1 < x < 0 and h′(x) < 0 for
x > 0.



It follows that the function h is strictly increasing on (−1, 0]
and strictly decreasing on [0,∞). Since h(0) = 0, we obtain
that h(x) < 0 for x 6= 0.

Then g ′(x) < 0 for x > −1, x 6= 0 as well. Therefore the
function g is strictly decreasing on (−1, 0) and on (0,∞).

Since the function f is the composition of g with the strictly
increasing function y (x) = ex , it is also strictly decreasing on
(−1, 0) and on (0,∞).

Besides, we have already shown that lim
x→0

f (x) = e. Since

f (0) = e, the function f is continuous at 0. It follows that
f is strictly decreasing on (−1,∞).



Problem. Suppose that a function p : R → R is

locally a polynomial, which means that for every
c ∈ R there exists ε > 0 such that p coincides

with a polynomial on the interval (c − ε, c + ε).
Prove that p is a polynomial.

For any c ∈ R let pc be a polynomial and εc > 0 be a
number such that p(x) = pc(x) for all x ∈ (c − εc , c + εc).
Consider the set E0 of all points c ∈ R such that the
polynomial pc coincides with p0.

We are going to show that E0 is both open and closed. Since
there are only two such sets, R and the empty set, and E0 is
clearly nonempty (0 ∈ E0), it will follow that E0 = R.
Consequently, p = p0 on the entire real line.



Lemma If two polynomials coincide (as functions) on an
open interval, then they are the same.

Proof: Suppose P and Q are two polynomials that coincide
on an open interval I . Then the function P − Q coincides
with 0 on I . Since P − Q is a polynomial and any nonzero
polynomial has only finitely many roots, we conclude that
P − Q = 0. Then the polynomials P and Q are the same.

Claim The set E0 is both open and closed.

Proof: Suppose c ∈ R and d ∈ (c − εc , c + εc). Then the
intervals Ic = (c − εc , c + εc) and Id = (d − εd , d + εd)
overlap so that the intersection Ic ∩ Id is also an open interval.
By construction, the function p coincides with pc on Ic and
with pd on Id . Hence pd coincides with pc on Ic ∩ Id . By
Lemma, pd is the same as pc . In the case c ∈ E0, it follows
that (c − εc , c + εc) ⊂ E0. That is, every point of E0 is an
interior point. In the case c ∈ ∂E0, we have d ∈ E0 for some
d ∈ (c − εc , c + εc). Then pc = pd = p0 so that c ∈ E0.


