MATH 409
Advanced Calculus |

Lecture 32:
Riemann integral.
Riemann sums and Darboux sums.



Partitions of an interval

Definition. A partition of a closed bounded interval [a, b] is
a finite subset P C [a, b] that includes the endpoints a and b.

Let xg,x1,...,x, be the list of all elements of P ordered so
that xo < x; < --- < x, (note that xp = a and x, = b).
These points split the interval [a, b] into finitely many

subintervals [xp, x1], [x1,%2], - - -, [Xn_1, Xn]. The norm of the
partition P, denoted ||P||, is the maximum of lengths of those
subintervals: ||P|| = max |x; — xj_1|.

1<j<n

Given two partitions P and Q of the same interval, we say
that Q is a refinement of P (or that Q is finer than P) if
P C Q. Observe that P C Q implies ||Q] < ||P|.

For any two partitions P and Q of the interval [a, b], the
union PU @ is also a partition that refines both P and Q.



Riemann sums and Riemann integral

Definition. A Riemann sum of a function f : [a, b] = R
with respect to a partition P = {xg, x1,...,x,} of [a, b]
generated by samples t; € [x;_1, Xj] is a sum

S(F.P.t) =" () (5 —x-0).

Remark. P = {xo,x1,...,X,} is a partition of [a, b] if
a=xp<x1<-<Xp_1 <x,=>b. The norm of the
partition P is ||P|| = maxi<j<n |Xj — Xj_1].

Definition. The Riemann sums S(f, P, t;) converge to a limit
I(f) as the norm ||P|| — 0O if for every € > 0 there exists

d > 0 such that [|P|| < ¢ implies |S(f,P,t;) —I(f)| <& for
any partition P and choice of samples t;.

If this is the case, then the function f is called integrable on
[a, b] and the limit /(f) is called the integral of f over [a, b,

denoted [ f(x) dx.



Darboux sums

Let P = {xo,x1,...,X,} be a partition of an interval [a, b,
where xo =a<x3 <---<x,=b. Let f:[a,b)] > R bea
bounded function.

Definition. The upper Darboux sum (or the upper
Riemann sum) of the function f over the partition P is the

number n
u(f,P)= ZMj(f)Aj,
j=1
where A; = —x_1 and M;(f) = supf([x-1,x]) for

Jj=1,2,...,n Likewise, the lower Darboux sum (or the
lower Riemann sum) of f over P is the number

L(f, P) = zn: mj(f) Aj,

where m;(f) = inf f([x;_1,x;]) for j=1,2,... n.



Darboux sums and a Riemann sum
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Properties of the Darboux sums

o L(f,P) < U(f,P).
Indeed, inf f(J) <supf(J) for any subinterval J C [a, b].

e U(f,P) <supf([a,b])-(b— a).

We have sup f(J) < sup f([a, b]) for any subinterval

J Cla,b]. Then supf(J)-|J] <supf([a,b])-|J]|, where |J|
is the length of J. Summing up over all subintervals J created
by the partition P, we obtain U(f, P) < supf([a, b]) - (b— a).

o inff([a b)) (b—a) < L(f,P).
The proof is analogous to the previous one.

Remark. Observe that sup f([a, b]) - (b —a) = U(f, Py) and
inf f([a, b]) - (b— a) = L(f, Py), where Py is the trivial
partition: Py = {a, b}.



Properties of the Darboux sums

o L(f,P)<L(f,Q) < U(f,Q) < U(f,P) forany
partition @ that refines P.

Every subinterval J created by the partition P is the union of
one or more subintervals Ji, J,, ..., Ji created by Q. Since
sup f(J;) <supf(J) for 1 < i<k, it follows that

Doy sup F(4) - 1] < sup F(J) - o5 || = sup £(J) - .
Summing up this inequality over all subintervals J, we obtain
U(f,Q) < U(f,P). The inequality L(f,P) < L(f,Q) is
proved in a similar way.

o L(f,P) < U(f,Q) for any partitions P and Q.

Since the partition PU @ refines both P and Q, it follows
from the above that L(f,P) < L(f,PU Q) and
U(f,PUQ) < U(f,Q). Besides, L(f,PUQ) < U(f,PUQ).



Upper and lower Darboux integrals

Suppose f : [a, b] — R is a bounded function.

Definition. The upper integral of f on [a, b], denoted
—b

b
/ f(x)dx or (U)/ f(x) dx, is the number
inf {U(f, P) | P is a partition of [a, b] }.

Similarly, the lower integral of f on [a, b], denoted

b b
/ f(x)dx or (L)/ f(x) dx, is the number

2 a3

sup {L(f,P) | P is a partition of [a, b] }.

Remark. Since —oo < L(f,P) < U(f, Q) < oo for all
partitions P and Q, it follows that

—o0 < (L)/b F(x) dx < (U)/b F(x) dx < +o0.



Integrability

Proposition |If a function f : [a, b] — R is integrable on the
interval [a, b] then it is bounded on [a, b].

Theorem 1 A bounded function f : [a, b] — R is integrable
on the interval [a, b] if and only if the upper and lower
integrals of f on [a, b] coincide. If this is the case, then their

b
common value is / f(x) dx.
a

Theorem 2 A bounded function f : [a, b] — R is integrable
on [a, b] if and only if for every € > 0 there is a partition P.
of [a, b] such that U(f,P.) — L(f,P.) <e.



Proof of Theorem 1 (“only if”): Assume that the Riemann
sums S(f, P, t;) converge to a limit /(f) as ||P|| — 0. Given
€ >0, we choose & > 0 so that for every partition P with
|P|| <6, we have |S(f,P,t;) —I(f)] < e for any choice of
samples t;. Let #; be a different set of samples for the same
partition P. Then |S(f,P,t) — I(f)] <e. We can choose
the samples t;, ; so that f(t;) is arbitrarily close to

sup f([xj_1, x;]) while f(%;) is arbitrarily close to

inf f([x;_1, x;]). That way S(f, P, t;) gets arbitrarily close to
U(f, P) while S(f, P, ;) gets arbitrarily close to L(f, P).
Hence it follows from the above inequalities that

|U(f,P) = I(f)| <e and |L(f,P)—I(f)| <e. Asa
consequence, |U(f,P)— L(f,P)| < 2e.

Let Iy(f) and I.(f) denote the upper and lower integrals of f.
Since L(f,P) < I.(f) < Iy(f) < U(f, P), it follows that
[Iy(f) — I.(f)] < 2¢. Besides, |I(f)— L(f,P)| < 2e, which
implies that |/.(f) — /()| < 3e. Since ¢ can be arbitrarily
small, we conclude that /Iy(f) = I.(f) = I(f).



Proof of Theorem 2: The “if" part follows from Theorem 1
since

0< (U)/b F(x) dx — (L)/b f(x) dx < U(F, P) — L(f, P)

for any partition P. Conversely, assume that f is integrable
on [a,b]. Given £ > 0, there exists a partition P of [a, b]
such that

U(f, P) < /b F(x) dx + %

Also, there exists a partition Q of [a, b] such that

L(f, Q) > /b f(x) dx — g

Then U(f,P)— L(f,Q) <e. Now PUQ is a partition of
[a, b] that refines both P and Q. It follows that
U(f,PUQ) < U(f,P) and L(f,PUQ) > L(f,Q). Hence
U(f,PUQ)—L(f,PUQ) < U(f,P)— L(f,Q) <e.



