MATH 409 Advanced Calculus I

Lecture 32: Riemann integral. Riemann sums and Darboux sums.

Partitions of an interval

Definition. A **partition** of a closed bounded interval [a, b] is a finite subset $P \subset [a, b]$ that includes the endpoints a and b.

Let x_0, x_1, \ldots, x_n be the list of all elements of P ordered so that $x_0 < x_1 < \cdots < x_n$ (note that $x_0 = a$ and $x_n = b$). These points split the interval [a, b] into finitely many subintervals $[x_0, x_1], [x_1, x_2], \ldots, [x_{n-1}, x_n]$. The **norm** of the partition P, denoted ||P||, is the maximum of lengths of those subintervals: $||P|| = \max_{1 \le j \le n} |x_j - x_{j-1}|$.

Given two partitions P and Q of the same interval, we say that Q is a **refinement** of P (or that Q is **finer** than P) if $P \subset Q$. Observe that $P \subset Q$ implies $||Q|| \le ||P||$.

For any two partitions P and Q of the interval [a, b], the union $P \cup Q$ is also a partition that refines both P and Q.

Riemann sums and Riemann integral

Definition. A **Riemann sum** of a function $f : [a, b] \to \mathbb{R}$ with respect to a partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b]generated by samples $t_j \in [x_{j-1}, x_j]$ is a sum

$$\mathcal{S}(f,P,t_j) = \sum_{j=1}^n f(t_j) (x_j - x_{j-1}).$$

Remark. $P = \{x_0, x_1, \dots, x_n\}$ is a partition of [a, b] if $a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$. The norm of the partition P is $||P|| = \max_{1 \le j \le n} |x_j - x_{j-1}|$.

Definition. The Riemann sums $S(f, P, t_j)$ converge to a limit I(f) as the norm $||P|| \to 0$ if for every $\varepsilon > 0$ there exists $\delta > 0$ such that $||P|| < \delta$ implies $|S(f, P, t_j) - I(f)| < \varepsilon$ for any partition P and choice of samples t_j .

If this is the case, then the function f is called **integrable** on [a, b] and the limit I(f) is called the **integral** of f over [a, b], denoted $\int_{a}^{b} f(x) dx$.

Darboux sums

Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of an interval [a, b], where $x_0 = a < x_1 < \dots < x_n = b$. Let $f : [a, b] \to \mathbb{R}$ be a bounded function.

Definition. The **upper Darboux sum** (or the **upper Riemann sum**) of the function f over the partition P is the number n

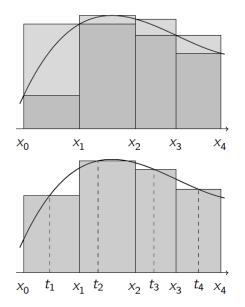
$$U(f,P) = \sum_{j=1} M_j(f) \Delta_j,$$

where $\Delta_j = x_j - x_{j-1}$ and $M_j(f) = \sup f([x_{j-1}, x_j])$ for j = 1, 2, ..., n. Likewise, the **lower Darboux sum** (or the **lower Riemann sum**) of f over P is the number

$$L(f,P) = \sum_{j=1}^{n} m_j(f) \Delta_j,$$

where $m_j(f) = \inf f([x_{j-1}, x_j])$ for j = 1, 2, ..., n.

Darboux sums and a Riemann sum



Properties of the Darboux sums

• $L(f, P) \leq U(f, P)$.

Indeed, inf $f(J) \leq \sup f(J)$ for any subinterval $J \subset [a, b]$.

•
$$U(f, P) \leq \sup f([a, b]) \cdot (b - a).$$

We have $\sup f(J) \leq \sup f([a, b])$ for any subinterval $J \subset [a, b]$. Then $\sup f(J) \cdot |J| \leq \sup f([a, b]) \cdot |J|$, where |J| is the length of J. Summing up over all subintervals J created by the partition P, we obtain $U(f, P) \leq \sup f([a, b]) \cdot (b - a)$.

•
$$\inf f([a, b]) \cdot (b - a) \leq L(f, P).$$

The proof is analogous to the previous one.

Remark. Observe that $\sup f([a, b]) \cdot (b - a) = U(f, P_0)$ and $\inf f([a, b]) \cdot (b - a) = L(f, P_0)$, where P_0 is the trivial partition: $P_0 = \{a, b\}$.

Properties of the Darboux sums

• $L(f, P) \leq L(f, Q) \leq U(f, Q) \leq U(f, P)$ for any partition Q that refines P.

Every subinterval *J* created by the partition *P* is the union of one or more subintervals J_1, J_2, \ldots, J_k created by *Q*. Since $\sup f(J_i) \leq \sup f(J)$ for $1 \leq i \leq k$, it follows that $\sum_{i=1}^k \sup f(J_i) \cdot |J_i| \leq \sup f(J) \cdot \sum_{i=1}^k |J_i| = \sup f(J) \cdot |J|$. Summing up this inequality over all subintervals *J*, we obtain $U(f, Q) \leq U(f, P)$. The inequality $L(f, P) \leq L(f, Q)$ is proved in a similar way.

• $L(f, P) \leq U(f, Q)$ for any partitions P and Q. Since the partition $P \cup Q$ refines both P and Q, it follows from the above that $L(f, P) \leq L(f, P \cup Q)$ and $U(f, P \cup Q) \leq U(f, Q)$. Besides, $L(f, P \cup Q) \leq U(f, P \cup Q)$.

Upper and lower Darboux integrals

Suppose $f : [a, b] \rightarrow \mathbb{R}$ is a bounded function.

Definition. The **upper integral** of f on [a, b], denoted $\int_{a}^{b} f(x) \, dx \quad \text{or} \quad (U) \int_{a}^{b} f(x) \, dx, \text{ is the number}$ inf $\{U(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Similarly, the **lower integral** of f on [a, b], denoted $\int_{a}^{b} f(x) dx \text{ or } (L) \int_{a}^{b} f(x) dx, \text{ is the number}$ $\sup \{L(f, P) \mid P \text{ is a partition of } [a, b] \}.$

Remark. Since $-\infty < L(f, P) \le U(f, Q) < +\infty$ for all partitions P and Q, it follows that

$$-\infty < (L)\int_a^b f(x)\,dx \le (U)\int_a^b f(x)\,dx < +\infty.$$

Integrability

Proposition If a function $f : [a, b] \to \mathbb{R}$ is integrable on the interval [a, b] then it is bounded on [a, b].

Theorem 1 A bounded function $f : [a, b] \to \mathbb{R}$ is integrable on the interval [a, b] if and only if the upper and lower integrals of f on [a, b] coincide. If this is the case, then their common value is $\int_{a}^{b} f(x) dx$.

Theorem 2 A bounded function $f : [a, b] \to \mathbb{R}$ is integrable on [a, b] if and only if for every $\varepsilon > 0$ there is a partition P_{ε} of [a, b] such that $U(f, P_{\varepsilon}) - L(f, P_{\varepsilon}) < \varepsilon$.

Proof of Theorem 1 ("only if"): Assume that the Riemann sums $\mathcal{S}(f, P, t_i)$ converge to a limit I(f) as $||P|| \to 0$. Given $\varepsilon > 0$, we choose $\delta > 0$ so that for every partition P with $||P|| < \delta$, we have $|S(f, P, t_i) - I(f)| < \varepsilon$ for any choice of samples t_i . Let \tilde{t}_i be a different set of samples for the same partition P. Then $|\mathcal{S}(f, P, \tilde{t}_i) - I(f)| < \varepsilon$. We can choose the samples t_i , \tilde{t}_i so that $f(t_i)$ is arbitrarily close to $\sup f([x_{i-1}, x_i])$ while $f(\tilde{t}_i)$ is arbitrarily close to inf $f([x_{i-1}, x_i])$. That way $\mathcal{S}(f, P, t_i)$ gets arbitrarily close to U(f, P) while $\mathcal{S}(f, P, \tilde{t}_i)$ gets arbitrarily close to L(f, P). Hence it follows from the above inequalities that $|U(f, P) - I(f)| \le \varepsilon$ and $|L(f, P) - I(f)| < \varepsilon$. As a consequence, $|U(f, P) - L(f, P)| < 2\varepsilon$.

Let $I_U(f)$ and $I_L(f)$ denote the upper and lower integrals of f. Since $L(f, P) \leq I_L(f) \leq I_U(f) \leq U(f, P)$, it follows that $|I_U(f) - I_L(f)| \leq 2\varepsilon$. Besides, $|I_L(f) - L(f, P)| \leq 2\varepsilon$, which implies that $|I_L(f) - I(f)| \leq 3\varepsilon$. Since ε can be arbitrarily small, we conclude that $I_U(f) = I_L(f) = I(f)$. *Proof of Theorem 2:* The "if" part follows from Theorem 1 since

$$0 \le (U) \int_{a}^{b} f(x) \, dx - (L) \int_{a}^{b} f(x) \, dx \le U(f, P) - L(f, P)$$

for any partition *P*. Conversely, assume that *f* is integrable on [a, b]. Given $\varepsilon > 0$, there exists a partition *P* of [a, b]such that

$$U(f,P) < \int_a^b f(x) \, dx + \frac{\varepsilon}{2}.$$

Also, there exists a partition Q of [a, b] such that

$$L(f,Q) > \int_a^b f(x) \, dx - \frac{\varepsilon}{2}$$

Then $U(f, P) - L(f, Q) < \varepsilon$. Now $P \cup Q$ is a partition of [a, b] that refines both P and Q. It follows that $U(f, P \cup Q) \le U(f, P)$ and $L(f, P \cup Q) \ge L(f, Q)$. Hence $U(f, P \cup Q) - L(f, P \cup Q) \le U(f, P) - L(f, Q) < \varepsilon$.