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Advanced Calculus I

Lecture 32:

Riemann integral.

Riemann sums and Darboux sums.



Partitions of an interval

Definition. A partition of a closed bounded interval [a, b] is
a finite subset P ⊂ [a, b] that includes the endpoints a and b.

Let x0, x1, . . . , xn be the list of all elements of P ordered so
that x0 < x1 < · · · < xn (note that x0 = a and xn = b).
These points split the interval [a, b] into finitely many
subintervals [x0, x1], [x1, x2], . . . , [xn−1, xn]. The norm of the
partition P, denoted ‖P‖, is the maximum of lengths of those
subintervals: ‖P‖ = max

1≤j≤n
|xj − xj−1|.

Given two partitions P and Q of the same interval, we say
that Q is a refinement of P (or that Q is finer than P) if
P ⊂ Q. Observe that P ⊂ Q implies ‖Q‖ ≤ ‖P‖.

For any two partitions P and Q of the interval [a, b], the
union P ∪ Q is also a partition that refines both P and Q.



Riemann sums and Riemann integral

Definition. A Riemann sum of a function f : [a, b] → R

with respect to a partition P = {x0, x1, . . . , xn} of [a, b]
generated by samples tj ∈ [xj−1, xj ] is a sum

S(f ,P, tj) =
∑n

j=1

f (tj) (xj − xj−1).

Remark. P = {x0, x1, . . . , xn} is a partition of [a, b] if
a = x0 < x1 < · · · < xn−1 < xn = b. The norm of the
partition P is ‖P‖ = max1≤j≤n |xj − xj−1|.

Definition. The Riemann sums S(f ,P, tj) converge to a limit
I (f ) as the norm ‖P‖ → 0 if for every ε > 0 there exists
δ > 0 such that ‖P‖ < δ implies |S(f ,P, tj)− I (f )| < ε for
any partition P and choice of samples tj .

If this is the case, then the function f is called integrable on
[a, b] and the limit I (f ) is called the integral of f over [a, b],

denoted
∫ b

a
f (x) dx .



Darboux sums

Let P = {x0, x1, . . . , xn} be a partition of an interval [a, b],
where x0 = a < x1 < · · · < xn = b. Let f : [a, b] → R be a
bounded function.

Definition. The upper Darboux sum (or the upper

Riemann sum) of the function f over the partition P is the
number

U(f ,P) =

n∑
j=1

Mj(f )∆j ,

where ∆j = xj − xj−1 and Mj(f ) = sup f ([xj−1, xj ]) for
j = 1, 2, . . . , n. Likewise, the lower Darboux sum (or the
lower Riemann sum) of f over P is the number

L(f ,P) =
n∑

j=1

mj(f )∆j ,

where mj(f ) = inf f ([xj−1, xj ]) for j = 1, 2, . . . , n.



Darboux sums and a Riemann sum



Properties of the Darboux sums

• L(f ,P) ≤ U(f ,P).

Indeed, inf f (J) ≤ sup f (J) for any subinterval J ⊂ [a, b].

• U(f ,P) ≤ sup f ([a, b]) · (b − a).

We have sup f (J) ≤ sup f ([a, b]) for any subinterval
J ⊂ [a, b]. Then sup f (J) · |J| ≤ sup f ([a, b]) · |J|, where |J|
is the length of J . Summing up over all subintervals J created
by the partition P, we obtain U(f ,P) ≤ sup f ([a, b]) · (b− a).

• inf f ([a, b]) · (b − a) ≤ L(f ,P).

The proof is analogous to the previous one.

Remark. Observe that sup f ([a, b]) · (b − a) = U(f ,P0) and
inf f ([a, b]) · (b − a) = L(f ,P0), where P0 is the trivial
partition: P0 = {a, b}.



Properties of the Darboux sums

• L(f ,P) ≤ L(f ,Q) ≤ U(f ,Q) ≤ U(f ,P) for any

partition Q that refines P.

Every subinterval J created by the partition P is the union of
one or more subintervals J1, J2, . . . , Jk created by Q. Since
sup f (Ji) ≤ sup f (J) for 1 ≤ i ≤ k, it follows that∑k

i=1
sup f (Ji) · |Ji | ≤ sup f (J) ·

∑k

i=1
|Ji | = sup f (J) · |J|.

Summing up this inequality over all subintervals J , we obtain
U(f ,Q) ≤ U(f ,P). The inequality L(f ,P) ≤ L(f ,Q) is
proved in a similar way.

• L(f ,P) ≤ U(f ,Q) for any partitions P and Q.

Since the partition P ∪ Q refines both P and Q, it follows
from the above that L(f ,P) ≤ L(f ,P ∪ Q) and
U(f ,P ∪Q) ≤ U(f ,Q). Besides, L(f ,P ∪Q) ≤ U(f ,P ∪Q).



Upper and lower Darboux integrals

Suppose f : [a, b] → R is a bounded function.

Definition. The upper integral of f on [a, b], denoted∫ b

a

f (x) dx or (U)

∫ b

a

f (x) dx , is the number

inf {U(f ,P) | P is a partition of [a, b] }.

Similarly, the lower integral of f on [a, b], denoted∫ b

a

f (x) dx or (L)

∫ b

a

f (x) dx , is the number

sup {L(f ,P) | P is a partition of [a, b] }.

Remark. Since −∞ < L(f ,P) ≤ U(f ,Q) < +∞ for all
partitions P and Q, it follows that

−∞ < (L)

∫ b

a

f (x) dx ≤ (U)

∫ b

a

f (x) dx < +∞.



Integrability

Proposition If a function f : [a, b] → R is integrable on the
interval [a, b] then it is bounded on [a, b].

Theorem 1 A bounded function f : [a, b] → R is integrable
on the interval [a, b] if and only if the upper and lower
integrals of f on [a, b] coincide. If this is the case, then their

common value is

∫ b

a

f (x) dx .

Theorem 2 A bounded function f : [a, b] → R is integrable
on [a, b] if and only if for every ε > 0 there is a partition Pε

of [a, b] such that U(f ,Pε)− L(f ,Pε) < ε.



Proof of Theorem 1 (“only if”): Assume that the Riemann
sums S(f ,P, tj) converge to a limit I (f ) as ‖P‖ → 0. Given
ε > 0, we choose δ > 0 so that for every partition P with
‖P‖ < δ, we have |S(f ,P, tj)− I (f )| < ε for any choice of
samples tj . Let t̃j be a different set of samples for the same
partition P. Then |S(f ,P, t̃j)− I (f )| < ε. We can choose
the samples tj , t̃j so that f (tj) is arbitrarily close to
sup f ([xj−1, xj ]) while f (t̃j) is arbitrarily close to
inf f ([xj−1, xj ]). That way S(f ,P, tj) gets arbitrarily close to
U(f ,P) while S(f ,P, t̃j) gets arbitrarily close to L(f ,P).
Hence it follows from the above inequalities that
|U(f ,P)− I (f )| ≤ ε and |L(f ,P)− I (f )| ≤ ε. As a
consequence, |U(f ,P)− L(f ,P)| ≤ 2ε.

Let IU(f ) and IL(f ) denote the upper and lower integrals of f .
Since L(f ,P) ≤ IL(f ) ≤ IU(f ) ≤ U(f ,P), it follows that
|IU(f )− IL(f )| ≤ 2ε. Besides, |IL(f )− L(f ,P)| ≤ 2ε, which
implies that |IL(f )− I (f )| ≤ 3ε. Since ε can be arbitrarily
small, we conclude that IU(f ) = IL(f ) = I (f ).



Proof of Theorem 2: The “if” part follows from Theorem 1
since

0 ≤ (U)

∫ b

a

f (x) dx − (L)

∫ b

a

f (x) dx ≤ U(f ,P)− L(f ,P)

for any partition P. Conversely, assume that f is integrable
on [a, b]. Given ε > 0, there exists a partition P of [a, b]
such that

U(f ,P) <

∫ b

a

f (x) dx +
ε

2
.

Also, there exists a partition Q of [a, b] such that

L(f ,Q) >

∫ b

a

f (x) dx −
ε

2
.

Then U(f ,P)− L(f ,Q) < ε. Now P ∪ Q is a partition of
[a, b] that refines both P and Q. It follows that
U(f ,P ∪ Q) ≤ U(f ,P) and L(f ,P ∪ Q) ≥ L(f ,Q). Hence
U(f ,P ∪ Q)− L(f ,P ∪ Q) ≤ U(f ,P)− L(f ,Q) < ε.


