MATH 409
 Advanced Calculus I

Lecture 33:
 Properties of the integral.

Riemann sums and Riemann integral

Definition. A Riemann sum of a function $f:[a, b] \rightarrow \mathbb{R}$ with respect to a partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ generated by samples $t_{j} \in\left[x_{j-1}, x_{j}\right]$ is a sum

$$
\mathcal{S}\left(f, P, t_{j}\right)=\sum_{j=1}^{n} f\left(t_{j}\right)\left(x_{j}-x_{j-1}\right) .
$$

Remark. $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ is a partition of $[a, b]$ if $a=x_{0}<x_{1}<\cdots<x_{n-1}<x_{n}=b$. The norm of the partition P is $\|P\|=\max _{1 \leq j \leq n}\left|x_{j}-x_{j-1}\right|$.

Definition. The Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ converge to a limit $I(f)$ as the norm $\|P\| \rightarrow 0$ if for every $\varepsilon>0$ there exists $\delta>0$ such that $\|P\|<\delta$ implies $\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|<\varepsilon$ for any partition P and choice of samples t_{j}.
If this is the case, then the function f is called integrable on $[a, b]$ and the limit $I(f)$ is called the integral of f over $[a, b]$, denoted $\int_{a}^{b} f(x) d x$.

Darboux sums

Let $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ be a partition of an interval $[a, b]$, where $x_{0}=a<x_{1}<\cdots<x_{n}=b$. Let $f:[a, b] \rightarrow \mathbb{R}$ be a bounded function.
Definition. The upper Darboux sum (or the upper Riemann sum) of the function f over the partition P is the number

$$
U(f, P)=\sum_{j=1}^{n} M_{j}(f) \Delta_{j}
$$

where $\Delta_{j}=x_{j}-x_{j-1}$ and $M_{j}(f)=\sup f\left(\left[x_{j-1}, x_{j}\right]\right)$ for $j=1,2, \ldots, n$. Likewise, the lower Darboux sum (or the lower Riemann sum) of f over P is the number

$$
L(f, P)=\sum_{j=1}^{n} m_{j}(f) \Delta_{j}
$$

where $m_{j}(f)=\inf f\left(\left[x_{j-1}, x_{j}\right]\right)$ for $j=1,2, \ldots, n$.

Darboux sums and a Riemann sum

Upper and lower Darboux integrals

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is a bounded function.
Definition. The upper integral of f on $[a, b]$, denoted $\int_{a}^{b} f(x) d x$ or $(U) \int_{a}^{b} f(x) d x$, is the number

$$
\inf \{U(f, P) \mid P \text { is a partition of }[a, b]\} .
$$

Similarly, the lower integral of f on $[a, b]$, denoted $\int_{a}^{b} f(x) d x$ or $(L) \int_{a}^{b} f(x) d x$, is the number

$$
\sup \{L(f, P) \mid P \text { is a partition of }[a, b]\} .
$$

Remark. Since $-\infty<L(f, P) \leq U(f, Q)<+\infty$ for all partitions P and Q, it follows that

$$
-\infty<(L) \int_{a}^{b} f(x) d x \leq(U) \int_{a}^{b} f(x) d x<+\infty .
$$

Integrability

Proposition If a function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on the interval $[a, b]$ then it is bounded on $[a, b]$.

Theorem 1 A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on the interval $[a, b]$ if and only if the upper and lower integrals of f on $[a, b]$ coincide. If this is the case, then their common value is $\int_{a}^{b} f(x) d x$.

Theorem 2 A bounded function $f:[a, b] \rightarrow \mathbb{R}$ is integrable on [a, b] if and only if for every $\varepsilon>0$ there is a partition P_{ε} of $[a, b]$ such that $U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon$.

Examples

- Constant function $f(x)=c$ is integrable on any
interval $[a, b]$ and $\int_{a}^{b} f(x) d x=c(b-a)$.
Indeed, for the trivial partition $P_{0}=\{a, b\}$ we obtain $U\left(f, P_{0}\right)=c(b-a)=L\left(f, P_{0}\right)$.
- Step function $f(x)=\left\{\begin{array}{ll}1 & \text { if } x>0, \\ 0 & \text { if } x \leq 0\end{array}\right.$ is integrable on $[-1,1]$ and $\int_{-1}^{1} f(x) d x=1$.
For any $\varepsilon \in(0,1)$ consider a partition $P_{\varepsilon}=\{-1,-\varepsilon, \varepsilon, 1\}$. Then $U\left(f, P_{\varepsilon}\right)=1+\varepsilon$ and $L\left(f, P_{\varepsilon}\right)=1-\varepsilon$.

Examples

- Dirichlet function $f(x)= \begin{cases}1 & \text { if } x \in \mathbb{Q}, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{cases}$ is not integrable on any interval $[a, b]$.

Indeed, any subinterval of $[a, b]$ contains both rational and irrational points. Therefore $U(f, P)=b-a$ and $L(f, P)=0$ for all partitions of $[a, b]$.

- Riemann function $f(x)=\left\{\begin{array}{cl}1 / q & \text { if } x=p / q, \\ 0 & \text { if } x \in \mathbb{R} \backslash \mathbb{Q}\end{array}\right.$ is integrable on any interval $[a, b]$.

For any $\delta>0$ the interval $[a, b]$ contains only finitely many points $y_{1}, y_{2}, \ldots, y_{k}$ such that $f\left(y_{i}\right) \geq \delta$. Let P_{δ} be a partition of $[a, b]$ that includes points $y_{i} \pm \delta / k$. Then $L\left(f, P_{\delta}\right)=0$ and $U\left(f, P_{\delta}\right) \leq 2 \delta+\delta(b-a)$.

Continuity \Longrightarrow integrability

Theorem If a function $f:[a, b] \rightarrow \mathbb{R}$ is continuous on the interval $[a, b]$, then it is integrable on $[a, b]$.
Proof: Since the function f is continuous, it is bounded on $[a, b]$. Furthermore, f is uniformly continuous on $[a, b]$. Therefore for every $\varepsilon>0$ there exists $\delta>0$ such that $|x-y|<\delta$ implies $|f(x)-f(y)|<\varepsilon /(b-a)$ for all $x, y \in[a, b]$. Take an arbitrary partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$ that satisfies $\|P\|<\delta$. Let $J=\left[x_{j-1}, x_{j}\right]$ be any subinterval of $[a, b]$ created by P. By the Extreme Value Theorem, there exist points $x_{-}, x_{+} \in J$ such that $f\left(x_{+}\right)=\sup f(J)$ and $f\left(x_{-}\right)=\inf f(J)$. Since $\|P\|<\delta$, the length of J satisfies $|J|<\delta$. Then $\left|x_{+}-x_{-}\right| \leq|J|<\delta$ so that $\left|f\left(x_{+}\right)-f\left(x_{-}\right)\right|<\varepsilon /(b-a)$. It follows that $\sup f(J) \cdot|J|-\inf f(J) \cdot|J|<\varepsilon|J| /(b-a)$. Summing up the latter inequality over all subintervals J, we obtain that $U(f, P)-L(f, P)<\varepsilon$. Thus f is integrable.

Integration as a linear operation

Theorem 1 If functions f, g are integrable on an interval $[a, b]$, then the sum $f+g$ is also integrable on $[a, b]$ and

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Theorem 2 If a function f is integrable on $[a, b]$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x
$$

Proof of Theorems 1 and 2: Let $I(f)$ denote the integral of f and $I(g)$ denote the integral of g over $[a, b]$. The key observation is that the Riemann sums depend linearly on a function. Namely, $\mathcal{S}\left(f+g, P, t_{j}\right)=\mathcal{S}\left(f, P, t_{j}\right)+\mathcal{S}\left(g, P, t_{j}\right)$ and $\mathcal{S}\left(\alpha f, P, t_{j}\right)=\alpha \cdot \mathcal{S}\left(f, P, t_{j}\right)$ for any partition P of $[a, b]$ and choice of samples t_{j}. It follows that

$$
\begin{aligned}
& \left|\mathcal{S}\left(f+g, P, t_{j}\right)-I(f)-I(g)\right| \\
& \quad \leq\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right|+\left|\mathcal{S}\left(g, P, t_{j}\right)-I(g)\right|, \\
& \left|\mathcal{S}\left(\alpha f, P, t_{j}\right)-\alpha I(f)\right|=|\alpha| \cdot\left|\mathcal{S}\left(f, P, t_{j}\right)-I(f)\right| .
\end{aligned}
$$

As $\|P\| \rightarrow 0$, the Riemann sums $\mathcal{S}\left(f, P, t_{j}\right)$ and $\mathcal{S}\left(g, P, t_{j}\right)$ get arbirarily close to $I(f)$ and $I(g)$, respectively. Then $\mathcal{S}\left(f+g, P, t_{j}\right)$ will be getting arbitrarily close to $I(f)+I(g)$ while $\mathcal{S}\left(\alpha f, P, t_{j}\right)$ will be getting arbitrarily close to $\alpha I(f)$. Thus $I(f)+I(g)$ is the integral of $f+g$ and $\alpha I(f)$ is the integral of αf over $[a, b]$.

Theorem If a function f is integrable on $[a, b]$, then it is integrable on each subinterval $[c, d] \subset[a, b]$.

Proof: Since f is integrable on the interval $[a, b]$, for any $\varepsilon>0$ there is a partition P_{ε} of $[a, b]$ such that $U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon$. Given a subinterval $[c, d] \subset[a, b]$, let $P_{\varepsilon}^{\prime}=P_{\varepsilon} \cup\{c, d\}$ and $Q_{\varepsilon}=P_{\varepsilon}^{\prime} \cap[c, d]$. Then P_{ε}^{\prime} is a partition of $[a, b]$ that refines P_{ε}. Hence

$$
U\left(f, P_{\varepsilon}^{\prime}\right)-L\left(f, P_{\varepsilon}^{\prime}\right) \leq U\left(f, P_{\varepsilon}\right)-L\left(f, P_{\varepsilon}\right)<\varepsilon .
$$

Since Q_{ε} is a partition of $[c, d]$ contained in P_{ε}^{\prime}, it follows that

$$
U\left(f, Q_{\varepsilon}\right)-L\left(f, Q_{\varepsilon}\right) \leq U\left(f, P_{\varepsilon}^{\prime}\right)-L\left(f, P_{\varepsilon}^{\prime}\right)<\varepsilon .
$$

We conclude that f is integrable on $[c, d]$.

Theorem If a function f is integrable on $[a, b]$ then for any $c \in(a, b)$,

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

Proof: Since f is integrable on the interval $[a, b]$, it is also integrable on subintervals $[a, c]$ and $[c, b]$. Let P be a partition of $[a, c]$ and $\left\{t_{j}\right\}$ be some samples for that partition. Further, let Q be a partition of $[c, b]$ and $\left\{\tau_{i}\right\}$ be some samples for that partition. Then $P \cup Q$ is a partition of $[a, b]$ and $\left\{t_{j}\right\} \cup\left\{\tau_{i}\right\}$ are samples for it. The key observation is that

$$
\mathcal{S}\left(f, P \cup Q,\left\{t_{j}\right\} \cup\left\{\tau_{i}\right\}\right)=\mathcal{S}\left(f, P, t_{j}\right)+\mathcal{S}\left(f, Q, \tau_{i}\right) .
$$

If $\|P\| \rightarrow 0$ and $\|Q\| \rightarrow 0$, then $\|P \cup Q\|=\max (\|P\|,\|Q\|)$ tends to 0 as well. Therefore the Riemann sums in the latter equality will converge to the integrals $\int_{a}^{b} f(x) d x, \int_{a}^{c} f(x) d x$, and $\int_{c}^{b} f(x) d x$, respectively.

Theorem If a function f is integrable on $[a, b]$ and $f([a, b]) \subset[A, B]$, then for each continuous function $g:[A, B] \rightarrow \mathbb{R}$ the composition $g \circ f$ is also integrable on $[a, b]$.

Corollary If functions f and g are integrable on $[a, b]$, then so is $f g$.
Proof: We have $(f+g)^{2}=f^{2}+g^{2}+2 f g$. Since f and g are integrable on $[a, b]$, so is $f+g$. Since $h(x)=x^{2}$ is a continuous function on \mathbb{R}, the compositions $h \circ f=f^{2}$, $h \circ g=g^{2}$, and $h \circ(f+g)=(f+g)^{2}$ are integrable on $[a, b]$. Then $f g=\frac{1}{2}(f+g)^{2}-\frac{1}{2} f^{2}-\frac{1}{2} g^{2}$ is integrable on $[a, b]$ as a linear combination of integrable functions.

Comparison Theorem for integrals

Theorem If functions f, g are integrable on $[a, b]$ and $f(x) \leq g(x)$ for all $x \in[a, b]$, then

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

Proof: Since $f \leq g$ on the interval $[a, b]$, it follows that $\mathcal{S}\left(f, P, t_{j}\right) \leq \mathcal{S}\left(g, P, t_{j}\right)$ for any partition P of $[a, b]$ and choice of samples t_{j}. As $\|P\| \rightarrow 0$, the sum $\mathcal{S}\left(f, P, t_{j}\right)$ gets arbitrarily close to the integral of f while $\mathcal{S}\left(g, P, t_{j}\right)$ gets arbitrarily close to the integral of g. The theorem follows.

Corollary If f is integrable on $[a, b]$ and $f(x) \geq 0$ for $x \in[a, b]$, then $\int_{a}^{b} f(x) d x \geq 0$.

Sets of measure zero

Definition. A subset E of the real line \mathbb{R} is said to have measure zero if for any $\varepsilon>0$ the set E can be covered by countably many open intervals J_{1}, J_{2}, \ldots such that $\sum_{n=1}^{\infty}\left|J_{n}\right|<\varepsilon$.

Examples. - Any countable set has measure zero. Indeed, suppose E is a countable set and let x_{1}, x_{2}, \ldots be a list of all elements of E. Given $\varepsilon>0$, let

$$
J_{n}=\left(x_{n}-\frac{\varepsilon}{2^{n+1}}, x_{n}+\frac{\varepsilon}{2^{n+1}}\right), \quad n=1,2, \ldots
$$

Then $E \subset J_{1} \cup J_{2} \cup \ldots$ and $\left|J_{n}\right|=\varepsilon / 2^{n}$ for all $n \in \mathbb{N}$ so that $\sum_{n=1}^{\infty}\left|J_{n}\right|=\varepsilon$.

- A nondegenerate interval $[a, b]$ is not a set of measure zero.
- There exist sets of measure zero that are of the same cardinality as \mathbb{R}.

Lebesgue's criterion for Riemann integrability

Definition. Suppose $P(x)$ is a property depending on $x \in S$, where $S \subset \mathbb{R}$. We say that $P(x)$ holds for almost all $x \in S$ (or almost everywhere on $S)$ if the set $\{x \in S \mid P(x)$ does not hold $\}$ has measure zero.

Theorem A function $f:[a, b] \rightarrow \mathbb{R}$ is Riemann integrable on the interval $[a, b]$ if and only if f is bounded on $[a, b]$ and continuous almost everywhere on $[a, b]$.

