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Lecture 33:
Properties of the integral.



Riemann sums and Riemann integral

Definition. A Riemann sum of a function f : [a, b] = R
with respect to a partition P = {xg, x1,...,x,} of [a, b]
generated by samples t; € [x;_1, Xj] is a sum

S(F.P.t) =" () (5 —x-0).

Remark. P = {xo,x1,...,X,} is a partition of [a, b] if
a=Xxp<Xx1<-<Xp_1 <Xx,=>b. The norm of the
partition P is ||P|| = maxi<j<n |Xj — Xj_1].

Definition. The Riemann sums S(f, P, t;) converge to a limit
I(f) as the norm ||P|| — 0O if for every € > 0 there exists

d > 0 such that [|P|| < ¢ implies |S(f,P,t;) —I(f)| <& for
any partition P and choice of samples t;.

If this is the case, then the function f is called integrable on
[a, b] and the limit /(f) is called the integral of f over [a, b,

denoted [ f(x) dx.



Darboux sums

Let P = {xo,x1,...,X,} be a partition of an interval [a, b,
where xo =a<x3 <---<x,=b. Let f:[a,b)] > R bea
bounded function.

Definition. The upper Darboux sum (or the upper
Riemann sum) of the function f over the partition P is the

number n
u(f,P)= ZMj(f)Aj,
j=1
where A; = —x_1 and M;(f) = supf([x-1,x]) for

J=1,2,...,n Likewise, the lower Darboux sum (or the
lower Riemann sum) of f over P is the number

L(f, P) = zn: mj(f) Aj,

where m;(f) = inf f([x;_1,x;]) for j=1,2,... n.



Darboux sums and a Riemann sum
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Upper and lower Darboux integrals

Suppose f : [a, b] — R is a bounded function.

Definition. The upper integral of f on [a, b], denoted
—b

b
/ f(x)dx or (U)/ f(x) dx, is the number
inf {U(f, P) | P is a partition of [a, b] }.

Similarly, the lower integral of f on [a, b], denoted

b b
/ f(x)dx or (L)/ f(x) dx, is the number

2 a3

sup {L(f,P) | P is a partition of [a, b] }.

Remark. Since —oo < L(f,P) < U(f, Q) < oo for all
partitions P and Q, it follows that

—o0 < (L)/b F(x) dx < (U)/b F(x) dx < +o0.



Integrability

Proposition |If a function f : [a, b] — R is integrable on the
interval [a, b] then it is bounded on [a, b].

Theorem 1 A bounded function f : [a, b] — R is integrable
on the interval [a, b] if and only if the upper and lower
integrals of f on [a, b] coincide. If this is the case, then their

b
common value is / f(x) dx.
a

Theorem 2 A bounded function f : [a, b] — R is integrable
on [a, b] if and only if for every € > 0 there is a partition P.
of [a, b] such that U(f,P.) — L(f,P.) <e.



Examples

e Constant function f(x) = c is integrable on any

b
interval [a, b] and / f(x)dx = c(b— a).

Indeed, for the trivial partition Py = {a, b} we obtain
U(f, Po) = c(b—a) = L(f, Py).

, 1 if x>0, .
e Step function f(x)—{O fx<0 S

1
integrable on [—1,1] and / f(x)dx = 1.
-1
For any ¢ € (0,1) consider a partition P. = {—1, —¢,¢,1}.
Then U(f,P.)=14¢ and L(f,P.)=1—c¢.



Examples
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0 if xeR\Q
is not integrable on any interval [a, b].

Indeed, any subinterval of [a, b] contains both rational and
irrational points. Therefore U(f,P)=b —a and
L(f,P) =0 for all partitions of [a, b].

1/q if x=p/q,
0 ifxeR\Q

is integrable on any interval [a, b].

e Riemann function f(x) = {

For any 6 > 0 the interval [a, b] contains only finitely many
points y1,¥s,...,yk such that f(y;) > J. Let P;s be a
partition of [a, b] that includes points y; £ d/k. Then
L(f,Ps) =0 and U(f,Ps) <20+ d(b— a).



Continuity — integrability

Theorem If a function f : [a, b] — R is continuous on the
interval [a, b], then it is integrable on [a, b].

Proof: Since the function f is continuous, it is bounded on
[a, b]. Furthermore, f is uniformly continuous on [a, b].
Therefore for every € > 0 there exists d > 0 such that

|x —y| <& implies |f(x) —f(y)| <e/(b—a) for all

X,y € |a, b]. Take an arbitrary partition P = {xo, x1,..., X}
of [a, b] that satisfies ||P|| <. Let J = [x;_1,x;] be any
subinterval of [a, b] created by P. By the Extreme Value
Theorem, there exist points x_, x; € J such that

f(xy) =supf(J) and f(x_) =inff(J). Since ||P]| <,
the length of J satisfies |J| < d. Then |xy —x_| < |J| < §
so that |f(x;) — f(x_)| < e/(b— a). It follows that
supf(J) - [J| —inff(J)-|J] <e|d|/(b—a). Summing up
the latter inequality over all subintervals J, we obtain that
U(f,P) — L(f,P) <e. Thus f is integrable.



Integration as a linear operation

Theorem 1 |If functions f, g are integrable on an
interval [a, b], then the sum f + g is also
integrable on [a, b] and

/ab(f(x)+g(x)) dx:/abf(x)dx+/abg(x)dx_

Theorem 2 If a function f is integrable on [a, b],
then for each a € R the scalar multiple af is also
integrable on [a, b] and

/abozf(x) dx = a/ab f(x) dx.



Proof of Theorems 1 and 2: Let /(f) denote the integral of f
and /(g) denote the integral of g over [a, b]. The key
observation is that the Riemann sums depend linearly on a
function. Namely, S(f + g, P, t;)) =S(f,P,t;)) +S(g, P, t;)
and S(af,P.t;)) =a-S(f,P,t;) for any partition P of [a, b]
and choice of samples t;. It follows that

S(f + 8, P, tj) = I(f) — 1(g)
<IS(f, P j) = 1(F)| +|S(g, P tj) — 1(g)l.

S(af, P, t;) — al(f)] = |af - [S(F, P, ;) — I(f)].

As ||P]| — 0, the Riemann sums S(f, P, t;) and S(g, P, t;)
get arbirarily close to /(f) and /(g), respectively. Then

S(f + g, P, t;) will be getting arbitrarily close to /(f) + /(g)
while S(af, P, t;) will be getting arbitrarily close to a/(f).
Thus /() + I(g) is the integral of f + g and «l(f) is the
integral of af over [a, b].



Theorem If a function f is integrable on [a, b],
then it is integrable on each subinterval
[c,d] C [a, b].

Proof: Since f is integrable on the interval [a, b], for any
e > 0 there is a partition P. of [a, b] such that
U(f,P.) — L(f,P.) < e. Given a subinterval [c,d] C [a, b],
let P.=P.U{c,d} and Q.= P.NJc,d]. Then Plis a
partition of [a, b] that refines P.. Hence
U(f,P.) — L(f,P.) < U(f,P.) — L(f,P.) < e.
Since Q- is a partition of [c, d] contained in P., it follows that
U(f,Q.) — L(f,Q.) < U(f,P.) — L(f,P)) < e.

We conclude that f is integrable on [c, d].



Theorem If a function f is integrable on [a, b]
then for any ¢ € (a, b),

/ab (x) dx — / £(x) dx+/cb £(x) dx.

Proof: Since f is integrable on the interval [a, b], it is also
integrable on subintervals [a, c| and [c, b]. Let P be a
partition of [a, c] and {t;} be some samples for that partition.
Further, let Q be a partition of [c, b] and {7;} be some
samples for that partition. Then PU Q is a partition of [a, b]
and {t;} U{7;} are samples for it. The key observation is that

S(F,PUQ,{t;} U{r}) = S(f,P.t;) + S(f. Q. 7).
If [Pl = 0 and [|Q| =0, then [|[PU Q[ = max([|P[],||Ql])

tends to 0 as well. Therefore the Riemabnn sums in the latter
equality will converge to the integrals [’ f(x)dx, [ f(x)dx,

and fcb f(x) dx, respectively.



Theorem If a function f is integrable on [a, b]
and f([a, b]) C [A, B], then for each continuous
function g : [A, B] = R the composition gof is
also integrable on [a, b].

Corollary If functions f and g are integrable on
[a, b], then so is fg.

Proof: We have (f + g)? = f?> + g2+ 2fg. Since f and g
are integrable on [a, b], sois f +g. Since h(x) =x* is a
continuous function on R, the compositions ho f = f2,
hog=g? and ho(f+g)=(f + g)? are integrable on
[a,b]. Then fg = 3(f +g)? — 3f? — g2 is integrable on
[a, b] as a linear combination of integrable functions.



Comparison Theorem for integrals

Theorem If functions f, g are integrable on [a, b]
and f(x) < g(x) for all x € [a, b], then

/a " ) dx < / " () .

Proof: Since f < g on the interval [a, b], it follows that
S(f,P.t;) <S(g,P.t;) for any partition P of [a, b] and
choice of samples t;. As ||P| — 0, the sum S(f, P, t;) gets
arbitrarily close to the integral of f while S(g, P, t;) gets
arbitrarily close to the integral of g. The theorem follows.

Corollary If f is integrable on [a, b] and f(x) >0
b
for x € [a, b], then / f(x)dx > 0.



Sets of measure zero

Definition. A subset E of the real line R is said to have
measure zero if for any € > 0 the set E can be covered by
countably many open intervals J;, J,... such that

220:1 | Jn| < e.
Examples. o Any countable set has measure zero.

Indeed, suppose E is a countable set and let x;,x,... be a
list of all elements of E. Given € > 0, let

€ €
J, = <x,,— 2n+1,x,,+2n+1), n=12,...

Then EC LU LU... and |J,| =¢/2" forall n€ N so
that > 7 |Ju| = .

e A nondegenerate interval [a, b] is not a set of measure
zero.

e There exist sets of measure zero that are of the same
cardinality as R.



Lebesgue’s criterion for Riemann integrability

Definition. Suppose P(x) is a property depending

on x € S, where S C R. We say that P(x) holds
for almost all x € S (or almost everywhere on

S) if the set {x € S| P(x) does not hold } has

measure zero.

Theorem A function f : [a, b] — R is Riemann
integrable on the interval [a, b] if and only if f is
bounded on [a, b] and continuous almost
everywhere on [a, b].



