MATH 409
Advanced Calculus I

Lecture 34:
 Fundamental theorem of calculus. Indefinite integral.

Integral with a variable limit

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is an integrable function.
For any $x \in[a, b]$ let $F(x)=\int_{a}^{x} f(t) d t$
(we assume that $F(a)=0$).
Theorem 1 The function F is well defined and continuous on $[a, b]$.

Theorem 2 If f is continuous at a point $x \in[a, b]$, then F is differentiable at x and $F^{\prime}(x)=f(x)$.

Lemma If a function f is integrable on $[a, b]$, then the function $|f|$ is also integrable on $[a, b]$ and

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Proof: The function $|f|$ is the composition of f with a continuous function $g(x)=|x|$. Therefore $|f|$ is integrable on $[a, b]$. Since
$-|f(x)| \leq f(x) \leq|f(x)|$ for $x \in[a, b]$, the
Comparison Theorem for integrals implies that

$$
-\int_{a}^{b}|f(x)| d x \leq \int_{a}^{b} f(x) d x \leq \int_{a}^{b}|f(x)| d x
$$

Suppose $f:[a, b] \rightarrow \mathbb{R}$ is an integrable function. For any $x \in[a, b]$ let $F(x)=\int_{a}^{x} f(t) d t$ (we assume that $F(a)=0$).

Theorem 1 The function F is well defined and continuous on $[a, b]$.

Proof: Since the function f is integrable on $[a, b]$, it is also integrable on each subinterval of $[a, b]$. Hence the function F is well defined on $[a, b]$. Besides, f is bounded: $|f(t)| \leq M$ for some $M>0$ and all $t \in[a, b]$. For any $x, y \in[a, b]$, $x \leq y$, we have $\int_{a}^{y} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{y} f(t) d t$. It follows that

$$
|F(y)-F(x)|=\left|\int_{x}^{y} f(t) d t\right| \leq \int_{x}^{y}|f(t)| d t \leq M|y-x| .
$$

In other words, F is a Lipschitz function on $[a, b]$. This implies that F is uniformly continuous on $[a, b]$.

Proof of Theorem 2: For any $x, y \in[a, b], x<y$, we have

$$
\int_{a}^{y} f(t) d t=\int_{a}^{x} f(t) d t+\int_{x}^{y} f(t) d t .
$$

Then

$$
F(y)-F(x)-f(x)(y-x)=\int_{x}^{y} f(t) d t-\int_{x}^{y} f(x) d t
$$

so that

$$
\begin{aligned}
& |F(y)-F(x)-f(x)(y-x)|=\left|\int_{x}^{y}(f(t)-f(x)) d t\right| \\
& \quad \leq \int_{x}^{y}|f(t)-f(x)| d t \leq \sup _{t \in[x, y]}|f(t)-f(x)|(y-x) .
\end{aligned}
$$

Finally, $\left|\frac{F(y)-F(x)}{y-x}-f(x)\right| \leq \sup _{t \in[x, y]}|f(t)-f(x)|$.
If the function f is right continuous at x, i.e., $f(y) \rightarrow f(x)$ as $y \rightarrow x+$, then $\sup _{t \in[x, y]}|f(t)-f(x)| \rightarrow 0$ as $y \rightarrow x+$. It follows that $f(x)$ is the right-hand derivative of F at x. Likewise, one can prove that left continuity of f at x implies that $f(x)$ is the left-hand derivative of F at x.

Fundamental theorem of calculus (part I)

Theorem If a function f is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is continuously differentiable on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Proof: Since f is continuous, it is also integrable on $[a, b]$. As already proved earlier, the integrability of f implies that the function F is well defined and continuous on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ whenever f is continuous at the point x.
Therefore the continuity of f on $[a, b]$ implies that $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$. In particular, F is continuously differentiable on $[a, b]$.

Fundamental theorem of calculus (part II)

Theorem If a function F is differentiable on $[a, b]$ and the derivative F^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Remark: The derivative F^{\prime} need not be continuous on $[a, b]$. Therefore Part II does not follow from Part I.

Proof: Consider any partition $P=\left\{x_{0}, x_{1}, \ldots, x_{n}\right\}$ of $[a, b]$. Let us choose samples $t_{j} \in\left[x_{j-1}, x_{j}\right]$ for the Riemann sum $\mathcal{S}\left(F^{\prime}, P, t_{j}\right)$ so that $F\left(x_{j}\right)-F\left(x_{j-1}\right)=F^{\prime}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)$ (this is possible due to the Mean Value Theorem). Then $\mathcal{S}\left(F^{\prime}, P, t_{j}\right)=\sum_{j=1}^{n} F^{\prime}\left(t_{j}\right)\left(x_{j}-x_{j-1}\right)=\sum_{j=1}^{n}\left(F\left(x_{j}\right)-F\left(x_{j-1}\right)\right)$ $=F\left(x_{n}\right)-F\left(x_{0}\right)=F(b)-F(a)$. Since the sums $\mathcal{S}\left(F^{\prime}, P, t_{j}\right)$ converge to $\int_{a}^{b} F^{\prime}(t) d t$ as $\|P\| \rightarrow 0$, the theorem follows.

Indefinite integral

Definition. Given a function $f:[a, b] \rightarrow \mathbb{R}$, a function $F:[a, b] \rightarrow \mathbb{R}$ is called the indefinite integral (or antiderivative, or primitive integral, or the primitive) of f if $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$. Notation for $F: \int f(x) d x$.
If the function f is continuous on $[a, b]$, then the function $F(x)=\int_{a}^{x} f(t) d t, x \in[a, b]$, is an indefinite integral of f due to the Fundamental Theorem of Calculus.

Suppose F is an antiderivative of f. If G is another antiderivative of f, then $G^{\prime}=F^{\prime}$ on $[a, b]$. Hence $(G-F)^{\prime}=G^{\prime}-F^{\prime}=0$ on $[a, b]$. It follows that $G-F$ is a constant function. Conversely, for any constant C the function $G(x)=F(x)+C$ is also an antiderivative of f. Thus the general indefinite integral of f is given by $\int f(x) d x=F(x)+C$, where C is an arbitrary constant.

Examples

- $\int x^{\alpha} d x=\frac{x^{\alpha+1}}{\alpha+1}+C$ on $(0, \infty)$ for $\alpha \neq-1$.

Indeed, $\left(\frac{x^{\alpha+1}}{\alpha+1}\right)^{\prime}=\frac{1}{\alpha+1}\left(x^{\alpha+1}\right)^{\prime}=\frac{1}{\alpha+1}(\alpha+1) x^{\alpha}=x^{\alpha}$.

- $\int \frac{1}{x} d x=\log |x|+C$ on $(0, \infty)$ and $(-\infty, 0)$. Indeed, $(\log x)^{\prime}=1 / x$ on $(0, \infty)$ and $(\log (-x))^{\prime}=1 / x$ on $(-\infty, 0)$.
- $\int \sin x d x=-\cos x+C$.
- $\int \cos x d x=\sin x+C$

Examples

$$
\int \frac{x^{2}}{x-1} d x
$$

To find the indefinite integral of this rational function, we expand it into the sum of a polynomial and a simple fraction:

$$
\frac{x^{2}}{x-1}=\frac{x^{2}-1+1}{x-1}=\frac{x^{2}-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1} .
$$

Since the domain of the function is $(-\infty, 1) \cup(1, \infty)$, the indefinite integral has different representations on the intervals $(-\infty, 1)$ and $(1, \infty)$:

$$
\int \frac{x^{2}}{x-1} d x= \begin{cases}x^{2} / 2+x+\log (x-1)+C_{1}, & x>1 \\ x^{2} / 2+x+\log (1-x)+C_{2}, & x<1\end{cases}
$$

