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Advanced Calculus I

Lecture 34:
Fundamental theorem of calculus.

Indefinite integral.



Integral with a variable limit

Suppose f : [a, b] → R is an integrable function.

For any x ∈ [a, b] let F (x) =

∫

x

a

f (t) dt

(we assume that F (a) = 0).

Theorem 1 The function F is well defined and

continuous on [a, b].

Theorem 2 If f is continuous at a point x ∈ [a, b],
then F is differentiable at x and F ′(x) = f (x).



Lemma If a function f is integrable on [a, b], then

the function |f | is also integrable on [a, b] and
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∫

b

a

f (x) dx
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≤

∫

b

a

|f (x)| dx .

Proof: The function |f | is the composition of f

with a continuous function g(x) = |x |. Therefore
|f | is integrable on [a, b]. Since

−|f (x)| ≤ f (x) ≤ |f (x)| for x ∈ [a, b], the
Comparison Theorem for integrals implies that

−

∫

b

a

|f (x)| dx ≤

∫

b

a

f (x) dx ≤

∫

b

a

|f (x)| dx .



Suppose f : [a, b] → R is an integrable function. For any

x ∈ [a, b] let F (x) =

∫ x

a

f (t) dt (we assume that F (a) = 0).

Theorem 1 The function F is well defined and

continuous on [a, b].

Proof: Since the function f is integrable on [a, b], it is also
integrable on each subinterval of [a, b]. Hence the function F

is well defined on [a, b]. Besides, f is bounded: |f (t)| ≤ M

for some M > 0 and all t ∈ [a, b]. For any x , y ∈ [a, b],
x ≤ y , we have

∫ y

a
f (t) dt =

∫ x

a
f (t) dt +

∫ y

x
f (t) dt. It

follows that

|F (y )− F (x)| =

∣
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∫ y

x

f (t) dt

∣
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∣

≤

∫ y

x

|f (t)| dt ≤ M |y − x |.

In other words, F is a Lipschitz function on [a, b]. This
implies that F is uniformly continuous on [a, b].



Proof of Theorem 2: For any x , y ∈ [a, b], x < y , we have
∫ y

a

f (t) dt =

∫ x

a

f (t) dt +

∫ y

x

f (t) dt.

Then

F (y )− F (x)− f (x) (y − x) =

∫ y

x

f (t) dt −

∫ y

x

f (x) dt

so that

|F (y )− F (x)− f (x) (y − x)| =

∣
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∫ y

x

(f (t)− f (x)) dt
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∣

≤

∫ y

x

|f (t)− f (x)| dt ≤ sup
t∈[x ,y ]

|f (t)− f (x)| (y − x).

Finally,
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∣

F (y )− F (x)

y − x
− f (x)

∣

∣

∣

∣

≤ sup
t∈[x ,y ]

|f (t)− f (x)|.

If the function f is right continuous at x , i.e., f (y ) → f (x)
as y → x+, then supt∈[x ,y ] |f (t)− f (x)| → 0 as y → x+.
It follows that f (x) is the right-hand derivative of F at x .
Likewise, one can prove that left continuity of f at x implies
that f (x) is the left-hand derivative of F at x .



Fundamental theorem of calculus (part I)

Theorem If a function f is continuous on an

interval [a, b], then the function

F (x) =

∫

x

a

f (t) dt, x ∈ [a, b],

is continuously differentiable on [a, b]. Moreover,

F ′(x) = f (x) for all x ∈ [a, b].

Proof: Since f is continuous, it is also integrable on [a, b].
As already proved earlier, the integrability of f implies that the
function F is well defined and continuous on [a, b]. Moreover,
F ′(x) = f (x) whenever f is continuous at the point x .
Therefore the continuity of f on [a, b] implies that
F ′(x) = f (x) for all x ∈ [a, b]. In particular, F is
continuously differentiable on [a, b].



Fundamental theorem of calculus (part II)

Theorem If a function F is differentiable on [a, b]
and the derivative F ′ is integrable on [a, b], then

∫

b

a

F ′(x) dx = F (b)− F (a).

Remark: The derivative F ′ need not be continuous on [a, b].
Therefore Part II does not follow from Part I.

Proof: Consider any partition P = {x0, x1, . . . , xn} of [a, b].
Let us choose samples tj ∈ [xj−1, xj ] for the Riemann sum
S(F ′,P, tj) so that F (xj)− F (xj−1) = F ′(tj) (xj − xj−1)
(this is possible due to the Mean Value Theorem). Then
S(F ′,P, tj) =

∑n

j=1 F
′(tj) (xj−xj−1) =

∑n

j=1(F (xj)−F (xj−1))

= F (xn)− F (x0) = F (b)− F (a). Since the sums S(F ′,P, tj)

converge to
∫ b

a
F ′(t) dt as ‖P‖ → 0, the theorem follows.



Indefinite integral

Definition. Given a function f : [a, b] → R, a function
F : [a, b] → R is called the indefinite integral (or
antiderivative, or primitive integral, or the primitive) of f

if F ′(x) = f (x) for all x ∈ [a, b]. Notation for F :

∫

f (x) dx .

If the function f is continuous on [a, b], then the function
F (x) =

∫ x

a
f (t) dt, x ∈ [a, b], is an indefinite integral of f

due to the Fundamental Theorem of Calculus.

Suppose F is an antiderivative of f . If G is another
antiderivative of f , then G ′ = F ′ on [a, b]. Hence
(G − F )′ = G ′ − F ′ = 0 on [a, b]. It follows that G − F is
a constant function. Conversely, for any constant C the
function G (x) = F (x) + C is also an antiderivative of f .
Thus the general indefinite integral of f is given by
∫

f (x) dx = F (x) + C , where C is an arbitrary constant.



Examples

•

∫

xα dx =
xα+1

α+ 1
+ C on (0,∞) for α 6= −1.

Indeed,

(

xα+1

α + 1

)′

=
1

α + 1
(xα+1)′ =

1

α + 1
(α + 1)xα = xα.

•

∫

1

x
dx = log |x |+ C on (0,∞) and (−∞, 0).

Indeed, (log x)′ = 1/x on (0,∞) and (log(−x))′ = 1/x on
(−∞, 0).

•

∫

sin x dx = − cos x + C .

•

∫

cos x dx = sin x + C .



Examples

•

∫

x2

x − 1
dx .

To find the indefinite integral of this rational function, we
expand it into the sum of a polynomial and a simple fraction:

x2

x − 1
=

x2 − 1 + 1

x − 1
=

x2 − 1

x − 1
+

1

x − 1
= x + 1 +

1

x − 1
.

Since the domain of the function is (−∞, 1) ∪ (1,∞), the
indefinite integral has different representations on the intervals
(−∞, 1) and (1,∞):

∫

x2

x − 1
dx =

{

x2/2 + x + log(x − 1) + C1, x > 1,

x2/2 + x + log(1− x) + C2, x < 1.


