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Advanced Calculus I

Lecture 35:

Integration by parts.

Integration by substitution.



Fundamental theorem of calculus

Theorem If a function f is continuous on an

interval [a, b], then the function

F (x) =

∫

x

a

f (t) dt, x ∈ [a, b],

is continuously differentiable on [a, b]. Moreover,

F ′(x) = f (x) for all x ∈ [a, b].

Theorem If a function F is differentiable on [a, b]
and the derivative F ′ is integrable on [a, b], then

∫

b

a

F ′(x) dx = F (b)− F (a).



Linearity of the integral

Theorem If functions f , g are integrable on an

interval [a, b], then the sum f + g is also
integrable on [a, b] and
∫

b

a

(

f (x) + g(x)
)

dx =

∫

b

a

f (x) dx +

∫

b

a

g(x) dx .

Theorem If a function f is integrable on [a, b],
then for each α ∈ R the scalar multiple αf is also

integrable on [a, b] and
∫

b

a

αf (x) dx = α

∫

b

a

f (x) dx .



Integration by parts

Theorem Suppose that functions f , g are differentiable on
[a, b] with the derivatives f ′, g ′ integrable on [a, b]. Then
∫

b

a

f (x)g ′(x) dx = f (b)g(b)− f (a)g(a)−
∫

b

a

f ′(x)g(x) dx .

Proof: By the Product Rule, (fg)′ = f ′g + fg ′ on [a, b].
Since the functions f , g , f ′, g ′ are integrable on [a, b], so are
the products f ′g and fg ′. Then (fg)′ is integrable on [a, b] as
well. By the Fundamental Theorem of Calculus,

f (b)g(b)− f (a)g(a) =

∫

b

a

(fg)′(x) dx

=

∫

b

a

f ′(x)g(x) dx+

∫

b

a

f (x)g ′(x) dx .



Corollary Suppose that functions f , g are continuously
differentiable on [a, b]. Then

∫

f (x)g ′(x) dx = f (x)g(x)−
∫

f ′(x)g(x) dx on [a, b].

To simplify notation, it is convenient to use the Leibniz

differential df of a function f defined by df (x) = f ′(x) dx
= df

dx
dx . Another convenient notation is f (x)|b

x=a
or simply

f (x)|b
a
, which denotes the difference f (b)− f (a).

Now the formula of integration by parts can be rewritten as
∫

b

a

f (x) dg(x) = f (x)g(x)

∣

∣

∣

∣

b

a

−
∫

b

a

g(x) df (x)

for definite integrals and as
∫

f dg = fg −
∫

g df

for indefinite integrals.



Examples

•
∫

log x dx = x log x − x + C on (0,∞).

Integrating by parts, we obtain
∫

log x dx = x log x −
∫

x d(log x) = x log x

−
∫

x(log x)′ dx = x log x −
∫

1 dx = x log x − x + C .

•
∫ π/2

0

x sin x dx = 1.

Integrating by parts, we obtain
∫ π/2

0

x sin x dx = − x cos x |π/20 −
∫ π/2

0

(− cos x) dx = sin x |π/20 = 1.



Examples

•
∫

log3 x dx .

We are going to integrate by parts several times:
∫

log3 x dx = x log3 x −
∫

x d(log3 x) = x log3 x −
∫

x(log3 x)′ dx

= x log3 x −
∫

3 log2 x dx = x log3 x − 3x log2 x +

∫

x d(3 log2 x)

= x log3 x − 3x log2 x +

∫

6 log x dx

= x log3 x − 3x log2 x + 6x log x −
∫

x d(6 log x)

= x log3 x − 3x log2 x + 6x log x −
∫

6 dx

= x log3 x − 3x log2 x + 6x log x − 6x + C .



Change of the variable in an integral

Theorem If φ is continuously differentiable on a closed,
nondegenerate interval [a, b] and f is continuous on
φ([a, b]), then
∫ φ(b)

φ(a)

f (t) dt =

∫

b

a

f (φ(x))φ′(x) dx =

∫

b

a

f (φ(x)) dφ(x).

Remarks. • It is possible that φ(a) ≥ φ(b). To make sense
of the integral in this case, we set

∫

d

c

f (t) dt = −
∫

c

d

f (t) dt

if c > d . Also, we set the integral to be 0 if c = d .

• Substitution t = φ(x) is a proper change of the variable
only if the function φ is strictly monotone. However the
theorem holds even without this assumption.



Proof of the theorem: Let us define two functions:

F (u) =

∫

u

φ(a)

f (t) dt, u ∈ φ([a, b]);

and

G (x) =

∫

x

a

f (φ(s))φ′(s) ds, x ∈ [a, b].

It follows from the Fundamental Theorem of Calculus that
F ′(u) = f (u) and G ′(x) = f (φ(x))φ′(x). By the Chain Rule,

(F ◦ φ)′(x) = F ′(φ(x))φ′(x) = f (φ(x))φ′(x) = G ′(x).

Therefore (F (φ(x))− G (x))′ = 0 for all x ∈ [a, b]. It follows
that the function F (φ(x))− G (x) is constant on [a, b]. In
particular, F (φ(b))− G (b) = F (φ(a))− G (a) = 0− 0 = 0.

Corollary Under assumptions of the theorem, if
∫

f (t) dt = F (t) +C then

∫

f (φ(x))φ′(x) dx = F (φ(x)) +C .



Examples

•
∫ π

0

sin2(2x) dx .

To integrate this function, we use a trigonometric formula
1− cos(2α) = 2 sin2 α and a new variable u = 4x :

∫ π

0

sin2(2x) dx =

∫ π

0

1− cos(4x)

2
dx

=

∫ π

0

1− cos(4x)

8
d(4x) =

∫ 4π

0

1− cos u

8
du

=
u − sin u

8

∣

∣

∣

∣

4π

u=0

=
π

2
.



Examples

•
∫

1/2

0

x√
1− x2

dx .

To integrate this function, we introduce a new variable
u = 1− x2:

∫ 1/2

0

x√
1− x2

dx = −1

2

∫ 1/2

0

(1− x2)′√
1− x2

dx

= −1

2

∫ 1/2

0

1√
1− x2

d(1− x2) = −1

2

∫ 3/4

1

1√
u
du

=

∫ 1

3/4

1

2
√
u
du =

√
u
∣

∣

1

u=3/4
= 1−

√
3

2
.



Examples

•
∫

1

0

1√
4− x2

dx .

To integrate this function, we use a substitution x = 2 sin t
(observe that x changes from 0 to 1 when t changes from 0 to
π/6):

∫ 1

0

1√
4− x2

dx =

∫ π/6

0

1
√

4− (2 sin t)2
d(2 sin t)

=

∫ π/6

0

(2 sin t)′
√

4− 4 sin2 t
dt =

∫ π/6

0

2 cos t√
4 cos2 t

dt

=

∫ π/6

0

2 cos t

2 cos t
dt =

∫ π/6

0

1 dx =
π

6
.



Examples

•
∫

√

1 + 4
√
x

2
√
x

dx .

To find this integral, we change the variable twice. First
∫

√

1 + 4
√
x

2
√
x

dx =

∫

√

1 + 4
√
x (

√
x)′ dx =

∫

√

1 +
√
u du,

where u =
√
x . Secondly, we introduce a variable

w =
√

1 +
√
u. Then u = (w 2 − 1)2 so that

du =
(

(w 2 − 1)2
)

′

dw = 2(w 2 − 1) · 2w dw = (4w 3 − 4w) dw .
Consequently,
∫

√

1 +
√
u du =

∫

w du =

∫

(4w 4 − 4w 2) dw

=
4

5
w 5 − 4

3
w 3 + C =

4

5

(

1 + x1/4
)5/2 − 4

3

(

1 + x1/4
)3/2

+ C .


