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Advanced Calculus |
Lecture 35:

Integration by parts.
Integration by substitution.



Fundamental theorem of calculus

Theorem If a function f is continuous on an
interval [a, b], then the function

F(x):/ f(t)dt, x € |a,b],
is continuously differentiable on [a, b]. Moreover,

F'(x) = f(x) for all x € [a, b].

Theorem If a function F is differentiable on [a, b]
and the derivative F’ is integrable on [a, b], then

b
/ F'(x) dx = F(b) — F(a).



Linearity of the integral

Theorem |If functions f, g are integrable on an
interval [a, b], then the sum f + g is also
integrable on [a, b] and

/ab(f(x) +8(x)) dx = /abf(X) dX+/abg(x) dx.

Theorem If a function f is integrable on [a, b],
then for each o € R the scalar multiple af is also
integrable on [a, b] and

/ab@f(x) dx = @/ab f(x) dx.



Integration by parts

Theorem Suppose that functions f, g are differentiable on
[a, b] with the derivatives f' g’ integrable on [a, b]. Then

/ f(x)g'(x) dx = f(b)g(b) — f(a)g(a) — / f'(x)g(x) dx.

Proof: By the Product Rule, (fg)' = f'g + fg’ on [a, b].
Since the functions f, g, f’, g’ are integrable on [a, b], so are
the products f'g and fg’. Then (fg)' is integrable on [a, b] as
well. By the Fundamental Theorem of Calculus,

F(D)e(6) - F(a)e(a) = [ () (x) o
- / F(x)g(x) dx + / F(x)g’(x) dx.



Corollary Suppose that functions f, g are continuously
differentiable on [a, b]. Then

/f(x)g'(x) dx = f(x)g(x) — / f'(x)g(x) dx on [a,b].

To simplify notation, it is convenient to use the Leibniz
differential df of a function f defined by df(x) = f'(x) dx
= % dx. Another convenient notation is f(x)|5_, or simply
f(x)|2, which denotes the difference f(b) — f(a).

Now the formula of integration by parts can be rewritten as

[ 100 dgt0 = 7(g)| — [ g drx)

for definite integrals and as

/fdg:fg—/gdf

for indefinite integrals.




Examples
o /Iogxdx:xlogx—x+ C on (0,00).

Integrating by parts, we obtain
/Iogx dx = xlogx — /xd(logx) = xlogx

—/x(logx)’dx:xlogx—/1dx:x|ogx—x+C.

/2
° / xsinxdx = 1.
0

Integrating by parts, we obtain

w/2 w/2
/ xsinx dx = —xcosx\gp—/ (= cosx) dx = sinx|7/* = 1.
0 0



Examples

° / log® x dx.

We are going to integrate by parts several times:
/Iog3xdx:xlog3x—/xd(log x) = x log? x—/x log® x)’
:xlog3x—/3log x dx = x log® x — 3x log? x+/xd 3 log® X)

:xlog3x—3xlog2x+/6logxdx
= xlog® x — 3xlog® x + 6x log x — /xd(6 log x)

:xlog3x—3x|og2x—l—6xlogx—/6dx

= xlog® x — 3xlog® x + 6x log x — 6x + C.



Change of the variable in an integral

Theorem If ¢ is continuously differentiable on a closed,
nondegenerate interval [a, b] and f is continuous on

o([a, b]), then

¢(b) b b
/(b f(t)dt = /a f(p(x)) @' (x) dx = /a f(o(x)) do(x).

(a)

Remarks. e |t is possible that ¢(a) > ¢(b). To make sense
of the integral in this case, we set

/Cdf(t)dt:—/dcf(t)dt

if ¢ > d. Also, we set the integral to be 0 if ¢ = d.

e Substitution t = ¢(x) is a proper change of the variable
only if the function ¢ is strictly monotone. However the
theorem holds even without this assumption.



Proof of the theorem: Let us define two functions:
F(u) :/ f(t)dt, ue¢(a,b]);
(a)
and

G(x) = / “F(6(s) @(s) ds, x € [a, b].

It follows from the Fundamental Theorem of Calculus that
F'(u) = f(u) and G'(x) = f(¢p(x)) ¢'(x). By the Chain Rule,
(Fo¢)(x) = F(a(x))d'(x) = f(6(x))d'(x) = G'(x).

Therefore (F(¢(x)) — G(x))' =0 for all x € [a,b]. It foIIows
that the function F(4(x)) — G(x) is constant on [a, b].
particular, F(¢(b)) — G(b) = F(¢(a)) — G(a) =0 — 0—0

Corollary Under assumptions of the theorem, if

/ F(£)dt = F(£)+ C then / F(6(x)) ¢'(x) dx = F(6(x)) + C.



Examples

o / sin?(2x) dx.
0

To integrate this function, we use a trigonometric formula
1 — cos(2a) = 2sin*a and a new variable u = 4x:

/sin2(2x)dx:/ ls(llx)dx
0 0 2

T 4T 4
:/ 1 — cos(4x) d(4x):/ 1 cosu
0 8 0 8




Examples

1/2 X

— dx.
0 V1—x2

To integrate this function, we introduce a new variable
u=1-—x%

1/2

x 1 /1/2 (1 . X2)/
o dx=—> [ XL
0 \/1 — X2 2 0 vV 1-— X2

1 1/2 1 1 3/4 1
Y SR
2Jo V1-x? 2J1 Vu

1
1 1 V3
/3/4 2Vu u \/E‘u:3/4 5



Examples

/1\/ 1
——dx
0 4 — x2

To integrate this function, we use a substitution x = 2sint
(observe that x changes from 0 to 1 when t changes from 0 to

7/6):

1
1
2S|nt
/ \/4—x2 / V4 — (2sin t)?
(2sint) ™6 2cost

dt

d -
V4 —4sin’t 0o Védcos’t

7r/62 ¢ /6
:/ = [ =T
o 2cost 0 6




Examples

[

To find this integral, we change the variable twice. First

/V” d_/\/r dx—/mdu,

where u = /x. Secondly, we introduce a variable
w=1/1++/u. Then u= (w?—1)? so that

du = ((w? — 1)2), dw =2(w? —1) - 2w dw = (4w? — 4w) dw.
Consequently,

/mdu:/wdu:/(4w4—4wz)dw

_ﬂ 5_ﬂ 3 _ﬂ 1/45/2_ﬂ 1/4\3/2
=W 3w +C_5(1+x ) 3(1+x )T+ C



