MATH 409

Advanced Calculus I

Lecture 35:
 Integration by parts.
 Integration by substitution.

Fundamental theorem of calculus

Theorem If a function f is continuous on an interval $[a, b]$, then the function

$$
F(x)=\int_{a}^{x} f(t) d t, \quad x \in[a, b]
$$

is continuously differentiable on $[a, b]$. Moreover, $F^{\prime}(x)=f(x)$ for all $x \in[a, b]$.

Theorem If a function F is differentiable on $[a, b]$ and the derivative F^{\prime} is integrable on $[a, b]$, then

$$
\int_{a}^{b} F^{\prime}(x) d x=F(b)-F(a)
$$

Linearity of the integral

Theorem If functions f, g are integrable on an interval $[a, b]$, then the sum $f+g$ is also integrable on $[a, b]$ and

$$
\int_{a}^{b}(f(x)+g(x)) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Theorem If a function f is integrable on $[a, b]$, then for each $\alpha \in \mathbb{R}$ the scalar multiple αf is also integrable on $[a, b]$ and

$$
\int_{a}^{b} \alpha f(x) d x=\alpha \int_{a}^{b} f(x) d x
$$

Integration by parts

Theorem Suppose that functions f, g are differentiable on $[a, b]$ with the derivatives f^{\prime}, g^{\prime} integrable on $[a, b]$. Then

$$
\int_{a}^{b} f(x) g^{\prime}(x) d x=f(b) g(b)-f(a) g(a)-\int_{a}^{b} f^{\prime}(x) g(x) d x
$$

Proof: By the Product Rule, $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ on $[a, b]$. Since the functions $f, g, f^{\prime}, g^{\prime}$ are integrable on $[a, b]$, so are the products $f^{\prime} g$ and $f g^{\prime}$. Then $(f g)^{\prime}$ is integrable on $[a, b]$ as well. By the Fundamental Theorem of Calculus,

$$
\begin{aligned}
f(b) g(b)-f(a) g(a) & =\int_{a}^{b}(f g)^{\prime}(x) d x \\
& =\int_{a}^{b} f^{\prime}(x) g(x) d x+\int_{a}^{b} f(x) g^{\prime}(x) d x
\end{aligned}
$$

Corollary Suppose that functions f, g are continuously differentiable on $[a, b]$. Then

$$
\int f(x) g^{\prime}(x) d x=f(x) g(x)-\int f^{\prime}(x) g(x) d x \text { on }[a, b] .
$$

To simplify notation, it is convenient to use the Leibniz differential $d f$ of a function f defined by $d f(x)=f^{\prime}(x) d x$ $=\frac{d f}{d x} d x$. Another convenient notation is $\left.f(x)\right|_{x=a} ^{b}$ or simply $\left.f(x)\right|_{a} ^{b}$, which denotes the difference $f(b)-f(a)$.

Now the formula of integration by parts can be rewritten as

$$
\int_{a}^{b} f(x) d g(x)=\left.f(x) g(x)\right|_{a} ^{b}-\int_{a}^{b} g(x) d f(x)
$$

for definite integrals and as

$$
\int f d g=f g-\int g d f
$$

for indefinite integrals.

Examples

- $\int \log x d x=x \log x-x+C$ on $(0, \infty)$.

Integrating by parts, we obtain

$$
\begin{aligned}
& \int \log x d x=x \log x-\int x d(\log x)=x \log x \\
& \quad-\int x(\log x)^{\prime} d x=x \log x-\int 1 d x=x \log x-x+C \\
& -\int_{0}^{\pi / 2} x \sin x d x=1
\end{aligned}
$$

Integrating by parts, we obtain

$$
\int_{0}^{\pi / 2} x \sin x d x=-\left.x \cos x\right|_{0} ^{\pi / 2}-\int_{0}^{\pi / 2}(-\cos x) d x=\left.\sin x\right|_{0} ^{\pi / 2}=1 .
$$

Examples

- $\int \log ^{3} x d x$.

We are going to integrate by parts several times:

$$
\begin{aligned}
& \int \log ^{3} x d x=x \log ^{3} x-\int x d\left(\log ^{3} x\right)=x \log ^{3} x-\int x\left(\log ^{3} x\right)^{\prime} d x \\
& =x \log ^{3} x-\int 3 \log ^{2} x d x=x \log ^{3} x-3 x \log ^{2} x+\int x d\left(3 \log ^{2} x\right) \\
& =x \log ^{3} x-3 x \log ^{2} x+\int 6 \log x d x \\
& =x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int x d(6 \log x) \\
& =x \log ^{3} x-3 x \log ^{2} x+6 x \log x-\int 6 d x \\
& =x \log ^{3} x-3 x \log ^{2} x+6 x \log x-6 x+C \text {. }
\end{aligned}
$$

Change of the variable in an integral

Theorem If ϕ is continuously differentiable on a closed, nondegenerate interval $[a, b]$ and f is continuous on $\phi([a, b])$, then

$$
\int_{\phi(a)}^{\phi(b)} f(t) d t=\int_{a}^{b} f(\phi(x)) \phi^{\prime}(x) d x=\int_{a}^{b} f(\phi(x)) d \phi(x) .
$$

Remarks. - It is possible that $\phi(a) \geq \phi(b)$. To make sense of the integral in this case, we set

$$
\int_{c}^{d} f(t) d t=-\int_{d}^{c} f(t) d t
$$

if $c>d$. Also, we set the integral to be 0 if $c=d$.

- Substitution $t=\phi(x)$ is a proper change of the variable only if the function ϕ is strictly monotone. However the theorem holds even without this assumption.

Proof of the theorem: Let us define two functions:

$$
F(u)=\int_{\phi(a)}^{u} f(t) d t, \quad u \in \phi([a, b]) ;
$$

and

$$
G(x)=\int_{a}^{x} f(\phi(s)) \phi^{\prime}(s) d s, \quad x \in[a, b] .
$$

It follows from the Fundamental Theorem of Calculus that $F^{\prime}(u)=f(u)$ and $G^{\prime}(x)=f(\phi(x)) \phi^{\prime}(x)$. By the Chain Rule,

$$
(F \circ \phi)^{\prime}(x)=F^{\prime}(\phi(x)) \phi^{\prime}(x)=f(\phi(x)) \phi^{\prime}(x)=G^{\prime}(x) .
$$

Therefore $(F(\phi(x))-G(x))^{\prime}=0$ for all $x \in[a, b]$. It follows that the function $F(\phi(x))-G(x)$ is constant on $[a, b]$. In particular, $F(\phi(b))-G(b)=F(\phi(a))-G(a)=0-0=0$.

Corollary Under assumptions of the theorem, if $\int f(t) d t=F(t)+C$ then $\int f(\phi(x)) \phi^{\prime}(x) d x=F(\phi(x))+C$.

Examples

- $\int_{0}^{\pi} \sin ^{2}(2 x) d x$.

To integrate this function, we use a trigonometric formula $1-\cos (2 \alpha)=2 \sin ^{2} \alpha$ and a new variable $u=4 x$:

$$
\begin{gathered}
\int_{0}^{\pi} \sin ^{2}(2 x) d x=\int_{0}^{\pi} \frac{1-\cos (4 x)}{2} d x \\
=\int_{0}^{\pi} \frac{1-\cos (4 x)}{8} d(4 x)=\int_{0}^{4 \pi} \frac{1-\cos u}{8} d u \\
=\left.\frac{u-\sin u}{8}\right|_{u=0} ^{4 \pi}=\frac{\pi}{2} .
\end{gathered}
$$

Examples

- $\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x$.

To integrate this function, we introduce a new variable $u=1-x^{2}$:

$$
\begin{gathered}
\int_{0}^{1 / 2} \frac{x}{\sqrt{1-x^{2}}} d x=-\frac{1}{2} \int_{0}^{1 / 2} \frac{\left(1-x^{2}\right)^{\prime}}{\sqrt{1-x^{2}}} d x \\
=-\frac{1}{2} \int_{0}^{1 / 2} \frac{1}{\sqrt{1-x^{2}}} d\left(1-x^{2}\right)=-\frac{1}{2} \int_{1}^{3 / 4} \frac{1}{\sqrt{u}} d u \\
=\int_{3 / 4}^{1} \frac{1}{2 \sqrt{u}} d u=\left.\sqrt{u}\right|_{u=3 / 4} ^{1}=1-\frac{\sqrt{3}}{2} .
\end{gathered}
$$

Examples

- $\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x$.

To integrate this function, we use a substitution $x=2 \sin t$ (observe that x changes from 0 to 1 when t changes from 0 to $\pi / 6)$:

$$
\begin{gathered}
\int_{0}^{1} \frac{1}{\sqrt{4-x^{2}}} d x=\int_{0}^{\pi / 6} \frac{1}{\sqrt{4-(2 \sin t)^{2}}} d(2 \sin t) \\
=\int_{0}^{\pi / 6} \frac{(2 \sin t)^{\prime}}{\sqrt{4-4 \sin ^{2} t}} d t=\int_{0}^{\pi / 6} \frac{2 \cos t}{\sqrt{4 \cos ^{2} t}} d t \\
=\int_{0}^{\pi / 6} \frac{2 \cos t}{2 \cos t} d t=\int_{0}^{\pi / 6} 1 d x=\frac{\pi}{6} .
\end{gathered}
$$

Examples

- $\int \frac{\sqrt{1+\sqrt[4]{x}}}{2 \sqrt{x}} d x$.

To find this integral, we change the variable twice. First $\int \frac{\sqrt{1+\sqrt[4]{x}}}{2 \sqrt{x}} d x=\int \sqrt{1+\sqrt[4]{x}}(\sqrt{x})^{\prime} d x=\int \sqrt{1+\sqrt{u}} d u$, where $u=\sqrt{x}$. Secondly, we introduce a variable $w=\sqrt{1+\sqrt{u}}$. Then $u=\left(w^{2}-1\right)^{2}$ so that $d u=\left(\left(w^{2}-1\right)^{2}\right)^{\prime} d w=2\left(w^{2}-1\right) \cdot 2 w d w=\left(4 w^{3}-4 w\right) d w$. Consequently,

$$
\begin{aligned}
& \int \sqrt{1+\sqrt{u}} d u=\int w d u=\int\left(4 w^{4}-4 w^{2}\right) d w \\
& =\frac{4}{5} w^{5}-\frac{4}{3} w^{3}+C=\frac{4}{5}\left(1+x^{1 / 4}\right)^{5 / 2}-\frac{4}{3}\left(1+x^{1 / 4}\right)^{3 / 2}+C .
\end{aligned}
$$

