Sample problems for Test 1

Any problem may be altered or replaced by a different one!

Problem 1. Prove the following version of the Archimedean property: for any positive real numbers x and y there exists a natural number n such that $n x>y$.

Problem 2. Prove that for any $n \in \mathbb{N}$,

$$
1^{3}+2^{3}+3^{3}+\cdots+n^{3}=\frac{n^{2}(n+1)^{2}}{4}
$$

Problem 3. Given a set X, let $\mathcal{P}(X)$ denote the set of all subsets of X. Prove that $\mathcal{P}(X)$ is not of the same cardinality as X.

Problem 4. Let $x_{1}=a>0$ and $x_{n+1}=2 \sqrt{x_{n}}$ for all $n \in \mathbb{N}$. Prove that the sequence $\left\{x_{n}\right\}$ is convergent and find its limit.

Problem 5. Suppose $\left\{r_{n}\right\}$ is a sequence that enumerates all rational numbers. Prove that every real number is a limit point of this sequence.

Problem 6. For each of the following series, determine whether the series converges and whether it converges absolutely:
(i) $\sum_{n=1}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$,
(ii) $\sum_{n=1}^{\infty} \frac{\sqrt{n}+2^{n} \cos n}{n!}$,
(iii) $\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n \log n}$.

