Exam 2

Problem 1 (50 pts.) Solve the heat equation in a rectangle $0<x<\pi, 0<y<\pi$,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

subject to the initial condition

$$
u(x, y, 0)=(\sin 2 x+\sin 3 x) \sin y
$$

and the boundary conditions

$$
u(0, y, t)=u(\pi, y, t)=0, \quad u(x, 0, t)=u(x, \pi, t)=0 .
$$

Problem 2 (50 pts.) Solve Laplace's equation inside a quarter-circle $0<r<1$, $0<\theta<\pi / 2$ (in polar coordinates r, θ) subject to the boundary conditions

$$
u(r, 0)=0, \quad u(r, \pi / 2)=0, \quad|u(0, \theta)|<\infty, \quad u(1, \theta)=f(\theta) .
$$

Bonus Problem 3 (40 pts.) Consider a regular Sturm-Liouville eigenvalue problem

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi^{\prime}(0)=0, \quad \phi^{\prime}(1)+h \phi(1)=0,
$$

where h is a real constant.
(i) For what values of h is $\lambda=0$ an eigenvalue?
(ii) For what values of h are all eigenvalues positive?
(iii) How many negative eigenvalues can this problem have?
(iv) Find an equation for positive eigenvalues.
(v) Find the asymptotics of λ_{n} as $n \rightarrow \infty$.

