
Math 412-501 October 20, 2006

Exam 2: Solutions

Problem 1 (50 pts.) Solve the heat equation in a rectangle 0 < x < π, 0 < y < π,

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2

subject to the initial condition

u(x, y, 0) = (sin 2x + sin 3x) sin y

and the boundary conditions

u(0, y, t) = u(π, y, t) = 0, u(x, 0, t) = u(x, π, t) = 0.

Solution: u(x, y, t) = e−5t sin 2x sin y + e−10t sin 3x sin y.

We search for the solution of the initial-boundary value problem as a superposition of solutions
u(x, y, t) = φ(x)h(y)G(t) with separated variables of the heat equation that satisfy the boundary
conditions. Substituting u(x, y, t) = φ(x)h(y)G(t) into the heat equation, we obtain

φ(x)h(y)G ′(t) = φ′′(x)h(y)G(t) + φ(x)h′′(y)G(t),

G ′(t)

G(t)
=

φ′′(x)

φ(x)
+

h′′(y)

h(y)
.

Since any of the expressions
G ′(t)

G(t)
,

φ′′(x)

φ(x)
, and

h′′(y)

h(y)
depend on one of the variables x, y, t and does

not depend on the other two, it follows that each of these expressions is constant. Hence

φ′′(x)

φ(x)
= −λ,

h′′(y)

h(y)
= −µ,

G ′(t)

G(t)
= −(λ + µ),

where λ and µ are constants. Then

φ′′ = −λφ, h′′ = −µh, G ′ = −(λ + µ)G.

Conversely, if functions φ, h, and G are solutions of the above ODEs for the same values of λ and µ,
then u(x, y, t) = φ(x)h(y)G(t) is a solution of the heat equation.

Substituting u(x, y, t) = φ(x)h(y)G(t) into the boundary conditions, we get

φ(0)h(y)G(t) = φ(π)h(y)G(t) = 0, φ(x)h(0)G(t) = φ(x)h(π)G(t) = 0.

It is no loss to assume that neither φ nor h nor G is identically zero. Then the boundary conditions
are satisfied if and only if φ(0) = φ(π) = 0, h(0) = h(π) = 0.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ(0) = φ(π) = 0.

This problem has eigenvalues λn = n2, n = 1, 2, . . . . The corresponding eigenfunctions are φn(x) =
sinnx.
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To determine h, we have the same eigenvalue problem

h′′ = −µh, h(0) = h(π) = 0.

Hence the eigenvalues are µm = m2, m = 1, 2, . . . . The corresponding eigenfunctions are hm(y) =
sinmy.

The function G is to be determined from the equation G ′ = −(λ + µ)G. The general solution of
this equation is G(t) = c0e

−(λ+µ)t, where c0 is a constant.
Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

unm(x, y, t) = e−(λn+µm)tφn(x)hm(y) = e−(n2+m2)t sinnx sinmy, n, m = 1, 2, 3, . . .

A superposition of these solutions is a double series

u(x, y, t) =
∞

∑

n=1

∞
∑

m=1

cnme−(n2+m2)t sinnx sinmy,

where cnm are constants. To determine the coefficients cnm, we substitute the series into the initial
condition u(x, y, 0) = (sin 2x + sin 3x) sin y:

(sin 2x + sin 3x) sin y =
∞

∑

n=1

∞
∑

m=1

cnm sinnx sinmy.

It is easy to observe that c2,1 = c3,1 = 1 while the other coefficients are equal to 0. Therefore

u(x, y, t) = e−5t sin 2x sin y + e−10t sin 3x sin y.

Problem 2 (50 pts.) Solve Laplace’s equation inside a quarter-circle 0 < r < 1,
0 < θ < π/2 (in polar coordinates r, θ) subject to the boundary conditions

u(r, 0) = 0, u(r, π/2) = 0, |u(0, θ)| < ∞, u(1, θ) = f(θ).

Solution: u(r, θ) =
∑∞

n=1
cnr

2n sin 2nθ, where

cn =
4

π

∫ π/2

0

f(θ) sin 2nθ dθ, n = 1, 2, . . .

Laplace’s equation in polar coordinates (r, θ):

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
= 0.

We search for the solution of the boundary value problem as a superposition of solutions u(r, θ) =
h(r)φ(θ) with separated variables of Laplace’s equation that satisfy the three homogeneous boundary
conditions. Substituting u(r, θ) = h(r)φ(θ) into Laplace’s equation, we obtain

h′′(r)φ(θ) +
1

r
h′(r)φ(θ) +

1

r2
h(r)φ′′(θ) = 0,

r2h′′(r) + rh′(r)

h(r)
= −φ′′(θ)

φ(θ)
.

2



Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows
that

r2h′′(r) + rh′(r)

h(r)
= −φ′′(θ)

φ(θ)
= λ,

where λ is a constant. Then

r2h′′(r) + rh′(r) = λh(r), φ′′ = −λφ.

Conversely, if functions h and φ are solutions of the above ODEs for the same value of λ, then
u(r, θ) = h(r)φ(θ) is a solution of Laplace’s equation in polar coordinates.

Substituting u(r, θ) = h(r)φ(θ) into the homogeneous boundary conditions, we get

h(r)φ(0) = 0, h(r)φ(π/2) = 0, |h(0)φ(θ)| < ∞.

It is no loss to assume that neither h nor φ is identically zero. Then the boundary conditions are
satisfied if and only if φ(0) = φ(π/2) = 0, |h(0)| < ∞.

To determine φ, we have an eigenvalue problem

φ′′ = −λφ, φ(0) = φ(π/2) = 0.

This problem has eigenvalues λn = (2n)2, n = 1, 2, . . . . The corresponding eigenfunctions are φn(θ) =
sin 2nθ.

The function h is to be determined from the equation r2h′′ +rh′ = λh and the boundary condition
|h(0)| < ∞. We may assume that λ is one of the above eigenvalues so that λ > 0. Then the general
solution of the equation is h(r) = c1r

µ + c2r
−µ, where µ =

√
λ and c1, c2 are constants. The boundary

condition |h(0)| < ∞ holds if c2 = 0.
Thus we obtain the following solutions of Laplace’s equation satisfying the three homogeneous

boundary conditions:
un(r, θ) = r2n sin 2nθ, n = 1, 2, . . .

A superposition of these solutions is a series

u(r, θ) =
∑∞

n=1
cnr2n sin 2nθ,

where c1, c2, . . . are constants. Substituting the series into the boundary condition u(1, θ) = f(θ), we
get

f(θ) =
∑∞

n=1
cn sin 2nθ.

The right-hand side is a Fourier sine series on the interval [0, π/2]. Therefore the boundary condition
is satisfied if this is the Fourier sine series of the function f(θ) on [0, π/2]. Hence

cn =
4

π

∫ π/2

0
f(θ) sin 2nθ dθ, n = 1, 2, . . .

Bonus Problem 3 (40 pts.) Consider a regular Sturm-Liouville eigenvalue problem

φ′′ + λφ = 0, φ′(0) = 0, φ′(1) + hφ(1) = 0,

where h is a real constant.

(i) For what values of h is λ = 0 an eigenvalue?

Solution: h = 0.
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In the case λ = 0, the general solution of the equation φ′′ + λφ = 0 is a linear function φ(x) =

c1x + c2, where c1, c2 are constants. Substituting it into the boundary conditions φ′(0) = 0 and

φ′(1) + hφ(1) = 0, we obtain equalities c1 = 0, c1 + h(c1 + c2) = 0. They imply that c1 = hc2 = 0. If

h 6= 0, it follows that c1 = c2 = 0, hence there are no eigenfunctions with eigenvalue λ = 0. If h = 0

then φ(x) = 1 is indeed an eigenfunction.

(ii) For what values of h are all eigenvalues positive?

Solution: h > 0.

In the case λ < 0, the general solution of the equation φ′′ + λφ = 0 is

φ(x) = c1 cosh µx + c2 sinhµx,

where µ =
√
−λ > 0 and c1, c2 are constants. Note that

φ′(x) = c1µ sinhµx + c2µ cosh µx.

The boundary condition φ′(0) = 0 is satisfied if and only if c2 = 0. Substituting φ(x) = c1 cosh µx
into the boundary condition φ′(1) + hφ(1) = 0, we obtain

c1µ sinhµ + hc1 cosh µ = 0,

c1(µ tanh µ + h) = 0.

If µ tanh µ 6= −h, it follows that c1 = 0, hence there are no eigenfunctions with eigenvalue λ = −µ2.
If µ tanh µ = −h then φ(x) = cosh µx is indeed an eigenfunction.

The function f(µ) = µ tanhµ is continuous. It is easy to see that f(0) = 0 and f(µ) > 0 for µ > 0.
Since tanhµ → 1 as µ → +∞, we have that f(µ) → +∞ as µ → +∞. It follows that f takes all
positive values on (0,∞).

By the above the eigenvalue problem has a negative eigenvalue if and only if h < 0. As shown in
the solution to the part (i), λ = 0 is an eigenvalue only for h = 0. Hence all eigenvalues are positive
if and only if h > 0.

The fact that for any h ≥ 0 all eigenvalues are nonnegative can also be obtained using the Rayleigh
quotient. If φ is an eigenfunction corresponding to an eigenvalue λ then

λ =

−φφ′
∣

∣

1

0
+

∫ 1

0
|φ′(x)|2 dx

∫ 1

0
|φ(x)|2 dx

.

The boundary conditions imply that

−φφ′
∣

∣

1

0
= φ(0)φ′(0) − φ(1)φ′(1) = h|φ(1)|2.

Hence λ ≥ 0 provided that h ≥ 0.

(iii) How many negative eigenvalues can this problem have?

Solution: One negative eigenvalue for h < 0.

Let f(µ) = µ tanhµ. As shown in the solution to the part (ii), λ < 0 is an eigenvalue if and only
if f(µ) = −h, where λ = −µ2, µ > 0. Observe that

f ′(µ) = tanhµ + µ tanh′ µ = tanhµ +
µ

cosh2 µ
.
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In particular, f ′(µ) > 0 for µ > 0. Since f is continuous, f(0) = 0, and f(µ) → +∞ as µ → +∞,

it follows that f is a one-to-one map of the interval (0,∞) onto itself. Therefore for any h < 0 the

eigenvalue problem has exactly one negative eigenvalue.

(iv) Find an equation for positive eigenvalues.

Solution: tan
√

λ =
h√
λ

.

In the case λ > 0, the general solution of the equation φ′′ + λφ = 0 is

φ(x) = c1 cos µx + c2 sinµx,

where µ =
√

λ and c1, c2 are constants. Note that

φ′(x) = −c1µ sin µx + c2µ cos µx.

The boundary condition φ′(0) = 0 is satisfied if and only if c2 = 0. Substituting φ(x) = c1 cos µx into
the boundary condition φ′(1) + hφ(1) = 0, we obtain

−c1µ sinµ + hc1 cos µ = 0,

c1(h cos µ − µ sin µ) = 0.

If h cos µ 6= µ sin µ, it follows that c1 = 0, hence there are no eigenfunctions with eigenvalue λ = µ2.
If h cos µ = µ sin µ then φ(x) = cos µx is indeed an eigenfunction.

Thus h cos
√

λ =
√

λ sin
√

λ is an equation for positive eigenvalues. Note that for any positive
solution λ of this equation we have cos

√
λ 6= 0. Indeed, if cos

√
λ = 0 then sin

√
λ = ±1 and√

λ sin
√

λ 6= 0. It follows that for λ > 0 this equation is equivalent to

tan
√

λ =
h√
λ

.

(v) Find the asymptotics of λn as n → ∞.

Solution:
√

λn ≈ (n − 1)π as n → ∞.

Positive eigenvalues are found from the equation tan
√

λ = h/
√

λ. The function f1(µ) = tanµ is
continuous, strictly increasing and assumes all real values on each of the intervals (πm−π/2, πm+π/2),
m = 0, 1, 2, . . . .

In the case h > 0, the function f2(µ) = h/µ is continuous and strictly decreasing on (0,∞). It
follows that the equation f1(µ) = f2(µ) has exactly one solution in each of the intervals (0, π/2) and
(πm− π/2, πm + π/2), m = 1, 2, . . . . In this case all eigenvalues are positive, hence π(n− 1)− π/2 <√

λn < π(n − 1) + π/2. Moreover, since tan
√

λn → 0 as n → ∞, it follows that
√

λn ≈ (n − 1)π.

If h = 0 then λn =
(

(n − 1)π
)2

, n = 1, 2, . . . .

If h < 0 then λ1 < 0 < λ2. In this case the function f2(µ) = h/µ is negative and strictly increasing

on (0,∞). The equation f1(µ) = f2(µ) has no solution in (0, π/2) and exactly one solution in each of the

intervals (πm−π/2, πm+π/2), m = 1, 2, . . . . We conclude that π(n−1)−π/2 <
√

λn < π(n−1)+π/2

for n ≥ 2. It follows that
√

λn ≈ (n − 1)π in this case as well.
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