Exam 2: Solutions

Problem 1 (50 pts.) Solve the heat equation in a rectangle $0<x<\pi, 0<y<\pi$,

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}
$$

subject to the initial condition

$$
u(x, y, 0)=(\sin 2 x+\sin 3 x) \sin y
$$

and the boundary conditions

$$
u(0, y, t)=u(\pi, y, t)=0, \quad u(x, 0, t)=u(x, \pi, t)=0
$$

Solution: $u(x, y, t)=e^{-5 t} \sin 2 x \sin y+e^{-10 t} \sin 3 x \sin y$.
We search for the solution of the initial-boundary value problem as a superposition of solutions $u(x, y, t)=\phi(x) h(y) G(t)$ with separated variables of the heat equation that satisfy the boundary conditions. Substituting $u(x, y, t)=\phi(x) h(y) G(t)$ into the heat equation, we obtain

$$
\begin{gathered}
\phi(x) h(y) G^{\prime}(t)=\phi^{\prime \prime}(x) h(y) G(t)+\phi(x) h^{\prime \prime}(y) G(t), \\
\frac{G^{\prime}(t)}{G(t)}=\frac{\phi^{\prime \prime}(x)}{\phi(x)}+\frac{h^{\prime \prime}(y)}{h(y)} .
\end{gathered}
$$

Since any of the expressions $\frac{G^{\prime}(t)}{G(t)}, \frac{\phi^{\prime \prime}(x)}{\phi(x)}$, and $\frac{h^{\prime \prime}(y)}{h(y)}$ depend on one of the variables x, y, t and does not depend on the other two, it follows that each of these expressions is constant. Hence

$$
\frac{\phi^{\prime \prime}(x)}{\phi(x)}=-\lambda, \quad \frac{h^{\prime \prime}(y)}{h(y)}=-\mu, \quad \frac{G^{\prime}(t)}{G(t)}=-(\lambda+\mu),
$$

where λ and μ are constants. Then

$$
\phi^{\prime \prime}=-\lambda \phi, \quad h^{\prime \prime}=-\mu h, \quad G^{\prime}=-(\lambda+\mu) G .
$$

Conversely, if functions ϕ, h, and G are solutions of the above ODEs for the same values of λ and μ, then $u(x, y, t)=\phi(x) h(y) G(t)$ is a solution of the heat equation.

Substituting $u(x, y, t)=\phi(x) h(y) G(t)$ into the boundary conditions, we get

$$
\phi(0) h(y) G(t)=\phi(\pi) h(y) G(t)=0, \quad \phi(x) h(0) G(t)=\phi(x) h(\pi) G(t)=0 .
$$

It is no loss to assume that neither ϕ nor h nor G is identically zero. Then the boundary conditions are satisfied if and only if $\phi(0)=\phi(\pi)=0, h(0)=h(\pi)=0$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(\pi)=0 .
$$

This problem has eigenvalues $\lambda_{n}=n^{2}, n=1,2, \ldots$ The corresponding eigenfunctions are $\phi_{n}(x)=$ $\sin n x$.

To determine h, we have the same eigenvalue problem

$$
h^{\prime \prime}=-\mu h, \quad h(0)=h(\pi)=0 .
$$

Hence the eigenvalues are $\mu_{m}=m^{2}, m=1,2, \ldots$. The corresponding eigenfunctions are $h_{m}(y)=$ $\sin m y$.

The function G is to be determined from the equation $G^{\prime}=-(\lambda+\mu) G$. The general solution of this equation is $G(t)=c_{0} e^{-(\lambda+\mu) t}$, where c_{0} is a constant.

Thus we obtain the following solutions of the heat equation satisfying the boundary conditions:

$$
u_{n m}(x, y, t)=e^{-\left(\lambda_{n}+\mu_{m}\right) t} \phi_{n}(x) h_{m}(y)=e^{-\left(n^{2}+m^{2}\right) t} \sin n x \sin m y, \quad n, m=1,2,3, \ldots
$$

A superposition of these solutions is a double series

$$
u(x, y, t)=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{n m} e^{-\left(n^{2}+m^{2}\right) t} \sin n x \sin m y
$$

where $c_{n m}$ are constants. To determine the coefficients $c_{n m}$, we substitute the series into the initial condition $u(x, y, 0)=(\sin 2 x+\sin 3 x) \sin y$:

$$
(\sin 2 x+\sin 3 x) \sin y=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} c_{n m} \sin n x \sin m y
$$

It is easy to observe that $c_{2,1}=c_{3,1}=1$ while the other coefficients are equal to 0 . Therefore

$$
u(x, y, t)=e^{-5 t} \sin 2 x \sin y+e^{-10 t} \sin 3 x \sin y .
$$

Problem 2 (50 pts.) Solve Laplace's equation inside a quarter-circle $0<r<1$, $0<\theta<\pi / 2$ (in polar coordinates r, θ) subject to the boundary conditions

$$
u(r, 0)=0, \quad u(r, \pi / 2)=0, \quad|u(0, \theta)|<\infty, \quad u(1, \theta)=f(\theta) .
$$

Solution: $u(r, \theta)=\sum_{n=1}^{\infty} c_{n} r^{2 n} \sin 2 n \theta$, where

$$
c_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \sin 2 n \theta d \theta, \quad n=1,2, \ldots
$$

Laplace's equation in polar coordinates (r, θ) :

$$
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0
$$

We search for the solution of the boundary value problem as a superposition of solutions $u(r, \theta)=$ $h(r) \phi(\theta)$ with separated variables of Laplace's equation that satisfy the three homogeneous boundary conditions. Substituting $u(r, \theta)=h(r) \phi(\theta)$ into Laplace's equation, we obtain

$$
\begin{gathered}
h^{\prime \prime}(r) \phi(\theta)+\frac{1}{r} h^{\prime}(r) \phi(\theta)+\frac{1}{r^{2}} h(r) \phi^{\prime \prime}(\theta)=0, \\
\frac{r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)}{h(r)}=-\frac{\phi^{\prime \prime}(\theta)}{\phi(\theta)} .
\end{gathered}
$$

Since the left-hand side does not depend on θ while the right-hand side does not depend on r, it follows that

$$
\frac{r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)}{h(r)}=-\frac{\phi^{\prime \prime}(\theta)}{\phi(\theta)}=\lambda
$$

where λ is a constant. Then

$$
r^{2} h^{\prime \prime}(r)+r h^{\prime}(r)=\lambda h(r), \quad \phi^{\prime \prime}=-\lambda \phi
$$

Conversely, if functions h and ϕ are solutions of the above ODEs for the same value of λ, then $u(r, \theta)=h(r) \phi(\theta)$ is a solution of Laplace's equation in polar coordinates.

Substituting $u(r, \theta)=h(r) \phi(\theta)$ into the homogeneous boundary conditions, we get

$$
h(r) \phi(0)=0, \quad h(r) \phi(\pi / 2)=0, \quad|h(0) \phi(\theta)|<\infty .
$$

It is no loss to assume that neither h nor ϕ is identically zero. Then the boundary conditions are satisfied if and only if $\phi(0)=\phi(\pi / 2)=0,|h(0)|<\infty$.

To determine ϕ, we have an eigenvalue problem

$$
\phi^{\prime \prime}=-\lambda \phi, \quad \phi(0)=\phi(\pi / 2)=0
$$

This problem has eigenvalues $\lambda_{n}=(2 n)^{2}, n=1,2, \ldots$ The corresponding eigenfunctions are $\phi_{n}(\theta)=$ $\sin 2 n \theta$.

The function h is to be determined from the equation $r^{2} h^{\prime \prime}+r h^{\prime}=\lambda h$ and the boundary condition $|h(0)|<\infty$. We may assume that λ is one of the above eigenvalues so that $\lambda>0$. Then the general solution of the equation is $h(r)=c_{1} r^{\mu}+c_{2} r^{-\mu}$, where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. The boundary condition $|h(0)|<\infty$ holds if $c_{2}=0$.

Thus we obtain the following solutions of Laplace's equation satisfying the three homogeneous boundary conditions:

$$
u_{n}(r, \theta)=r^{2 n} \sin 2 n \theta, \quad n=1,2, \ldots
$$

A superposition of these solutions is a series

$$
u(r, \theta)=\sum_{n=1}^{\infty} c_{n} r^{2 n} \sin 2 n \theta
$$

where c_{1}, c_{2}, \ldots are constants. Substituting the series into the boundary condition $u(1, \theta)=f(\theta)$, we get

$$
f(\theta)=\sum_{n=1}^{\infty} c_{n} \sin 2 n \theta
$$

The right-hand side is a Fourier sine series on the interval $[0, \pi / 2]$. Therefore the boundary condition is satisfied if this is the Fourier sine series of the function $f(\theta)$ on $[0, \pi / 2]$. Hence

$$
c_{n}=\frac{4}{\pi} \int_{0}^{\pi / 2} f(\theta) \sin 2 n \theta d \theta, \quad n=1,2, \ldots
$$

Bonus Problem 3 (40 pts.) Consider a regular Sturm-Liouville eigenvalue problem

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad \phi^{\prime}(0)=0, \quad \phi^{\prime}(1)+h \phi(1)=0
$$

where h is a real constant.
(i) For what values of h is $\lambda=0$ an eigenvalue?

Solution: $h=0$.

In the case $\lambda=0$, the general solution of the equation $\phi^{\prime \prime}+\lambda \phi=0$ is a linear function $\phi(x)=$ $c_{1} x+c_{2}$, where c_{1}, c_{2} are constants. Substituting it into the boundary conditions $\phi^{\prime}(0)=0$ and $\phi^{\prime}(1)+h \phi(1)=0$, we obtain equalities $c_{1}=0, c_{1}+h\left(c_{1}+c_{2}\right)=0$. They imply that $c_{1}=h c_{2}=0$. If $h \neq 0$, it follows that $c_{1}=c_{2}=0$, hence there are no eigenfunctions with eigenvalue $\lambda=0$. If $h=0$ then $\phi(x)=1$ is indeed an eigenfunction.
(ii) For what values of h are all eigenvalues positive?

Solution: $h>0$.
In the case $\lambda<0$, the general solution of the equation $\phi^{\prime \prime}+\lambda \phi=0$ is

$$
\phi(x)=c_{1} \cosh \mu x+c_{2} \sinh \mu x
$$

where $\mu=\sqrt{-\lambda}>0$ and c_{1}, c_{2} are constants. Note that

$$
\phi^{\prime}(x)=c_{1} \mu \sinh \mu x+c_{2} \mu \cosh \mu x .
$$

The boundary condition $\phi^{\prime}(0)=0$ is satisfied if and only if $c_{2}=0$. Substituting $\phi(x)=c_{1} \cosh \mu x$ into the boundary condition $\phi^{\prime}(1)+h \phi(1)=0$, we obtain

$$
\begin{gathered}
c_{1} \mu \sinh \mu+h c_{1} \cosh \mu=0, \\
c_{1}(\mu \tanh \mu+h)=0 .
\end{gathered}
$$

If $\mu \tanh \mu \neq-h$, it follows that $c_{1}=0$, hence there are no eigenfunctions with eigenvalue $\lambda=-\mu^{2}$. If $\mu \tanh \mu=-h$ then $\phi(x)=\cosh \mu x$ is indeed an eigenfunction.

The function $f(\mu)=\mu \tanh \mu$ is continuous. It is easy to see that $f(0)=0$ and $f(\mu)>0$ for $\mu>0$. Since $\tanh \mu \rightarrow 1$ as $\mu \rightarrow+\infty$, we have that $f(\mu) \rightarrow+\infty$ as $\mu \rightarrow+\infty$. It follows that f takes all positive values on $(0, \infty)$.

By the above the eigenvalue problem has a negative eigenvalue if and only if $h<0$. As shown in the solution to the part (i), $\lambda=0$ is an eigenvalue only for $h=0$. Hence all eigenvalues are positive if and only if $h>0$.

The fact that for any $h \geq 0$ all eigenvalues are nonnegative can also be obtained using the Rayleigh quotient. If ϕ is an eigenfunction corresponding to an eigenvalue λ then

$$
\lambda=\frac{-\left.\phi \phi^{\prime}\right|_{0} ^{1}+\int_{0}^{1}\left|\phi^{\prime}(x)\right|^{2} d x}{\int_{0}^{1}|\phi(x)|^{2} d x}
$$

The boundary conditions imply that

$$
-\left.\phi \phi^{\prime}\right|_{0} ^{1}=\phi(0) \phi^{\prime}(0)-\phi(1) \phi^{\prime}(1)=h|\phi(1)|^{2} .
$$

Hence $\lambda \geq 0$ provided that $h \geq 0$.
(iii) How many negative eigenvalues can this problem have?

Solution: One negative eigenvalue for $h<0$.
Let $f(\mu)=\mu \tanh \mu$. As shown in the solution to the part (ii), $\lambda<0$ is an eigenvalue if and only if $f(\mu)=-h$, where $\lambda=-\mu^{2}, \mu>0$. Observe that

$$
f^{\prime}(\mu)=\tanh \mu+\mu \tanh ^{\prime} \mu=\tanh \mu+\frac{\mu}{\cosh ^{2} \mu} .
$$

In particular, $f^{\prime}(\mu)>0$ for $\mu>0$. Since f is continuous, $f(0)=0$, and $f(\mu) \rightarrow+\infty$ as $\mu \rightarrow+\infty$, it follows that f is a one-to-one map of the interval $(0, \infty)$ onto itself. Therefore for any $h<0$ the eigenvalue problem has exactly one negative eigenvalue.
(iv) Find an equation for positive eigenvalues.

Solution: $\tan \sqrt{\lambda}=\frac{h}{\sqrt{\lambda}}$.
In the case $\lambda>0$, the general solution of the equation $\phi^{\prime \prime}+\lambda \phi=0$ is

$$
\phi(x)=c_{1} \cos \mu x+c_{2} \sin \mu x,
$$

where $\mu=\sqrt{\lambda}$ and c_{1}, c_{2} are constants. Note that

$$
\phi^{\prime}(x)=-c_{1} \mu \sin \mu x+c_{2} \mu \cos \mu x .
$$

The boundary condition $\phi^{\prime}(0)=0$ is satisfied if and only if $c_{2}=0$. Substituting $\phi(x)=c_{1} \cos \mu x$ into the boundary condition $\phi^{\prime}(1)+h \phi(1)=0$, we obtain

$$
\begin{gathered}
-c_{1} \mu \sin \mu+h c_{1} \cos \mu=0, \\
c_{1}(h \cos \mu-\mu \sin \mu)=0 .
\end{gathered}
$$

If $h \cos \mu \neq \mu \sin \mu$, it follows that $c_{1}=0$, hence there are no eigenfunctions with eigenvalue $\lambda=\mu^{2}$. If $h \cos \mu=\mu \sin \mu$ then $\phi(x)=\cos \mu x$ is indeed an eigenfunction.

Thus $h \cos \sqrt{\lambda}=\sqrt{\lambda} \sin \sqrt{\lambda}$ is an equation for positive eigenvalues. Note that for any positive solution λ of this equation we have $\cos \sqrt{\lambda} \neq 0$. Indeed, if $\cos \sqrt{\lambda}=0$ then $\sin \sqrt{\lambda}= \pm 1$ and $\sqrt{\lambda} \sin \sqrt{\lambda} \neq 0$. It follows that for $\lambda>0$ this equation is equivalent to

$$
\tan \sqrt{\lambda}=\frac{h}{\sqrt{\lambda}} .
$$

(v) Find the asymptotics of λ_{n} as $n \rightarrow \infty$.

Solution: $\sqrt{\lambda_{n}} \approx(n-1) \pi$ as $n \rightarrow \infty$.
Positive eigenvalues are found from the equation $\tan \sqrt{\lambda}=h / \sqrt{\lambda}$. The function $f_{1}(\mu)=\tan \mu$ is continuous, strictly increasing and assumes all real values on each of the intervals ($\pi m-\pi / 2, \pi m+\pi / 2$), $m=0,1,2, \ldots$.

In the case $h>0$, the function $f_{2}(\mu)=h / \mu$ is continuous and strictly decreasing on $(0, \infty)$. It follows that the equation $f_{1}(\mu)=f_{2}(\mu)$ has exactly one solution in each of the intervals $(0, \pi / 2)$ and $(\pi m-\pi / 2, \pi m+\pi / 2), m=1,2, \ldots$. In this case all eigenvalues are positive, hence $\pi(n-1)-\pi / 2<$ $\sqrt{\lambda_{n}}<\pi(n-1)+\pi / 2$. Moreover, since $\tan \sqrt{\lambda_{n}} \rightarrow 0$ as $n \rightarrow \infty$, it follows that $\sqrt{\lambda_{n}} \approx(n-1) \pi$.

If $h=0$ then $\lambda_{n}=((n-1) \pi)^{2}, n=1,2, \ldots$.
If $h<0$ then $\lambda_{1}<0<\lambda_{2}$. In this case the function $f_{2}(\mu)=h / \mu$ is negative and strictly increasing on $(0, \infty)$. The equation $f_{1}(\mu)=f_{2}(\mu)$ has no solution in $(0, \pi / 2)$ and exactly one solution in each of the intervals $(\pi m-\pi / 2, \pi m+\pi / 2), m=1,2, \ldots$. We conclude that $\pi(n-1)-\pi / 2<\sqrt{\lambda_{n}}<\pi(n-1)+\pi / 2$ for $n \geq 2$. It follows that $\sqrt{\lambda_{n}} \approx(n-1) \pi$ in this case as well.

