## Exam 3

Problem 1 ( 40 pts.) Solve the initial-boundary value problem for the wave equation in a semicircle (in polar coordinates $r, \theta$ )

$$
\begin{aligned}
& \frac{\partial^{2} u}{\partial t^{2}}=\nabla^{2} u \quad(0<r<1, \quad 0<\theta<\pi) \\
& u(r, \theta, 0)=f(r) \sin 3 \theta, \quad \frac{\partial u}{\partial t}(r, \theta, 0)=0 \quad(0<r<1, \quad 0<\theta<\pi), \\
& u=0 \text { on the entire boundary. }
\end{aligned}
$$

Problem 2 (25 pts.) It is known that

$$
\int_{-\infty}^{\infty} e^{-\alpha x^{2}} e^{i \beta x} d x=\sqrt{\frac{\pi}{\alpha}} e^{-\beta^{2} /(4 \alpha)}, \quad \alpha>0, \beta \in \mathbb{R} .
$$

Let $f(x)=e^{-x^{2} / 2}, x \in \mathbb{R}$.
(i) Find the Fourier transform of $f$.
(ii) Find the inverse Fourier transform of $f$.
(iii) Find an expression for the convolution $f * f$ that does not involve integrals.

Problem 3 ( $\mathbf{3 5}$ pts.) Solve the initial value problem for the heat equation on the infinite interval

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(-\infty<x<\infty, \quad t>0) \\
& u(x, 0)=e^{-x^{2} / 2}
\end{aligned}
$$

You cannot use Green's function unless you derive it.
Extra credit can be obtained when the solution will contain no integrals.

Bonus Problem 4 (35 pts.) Solve the initial-boundary value problem for the heat equation on the interval $[0,1]$

$$
\begin{aligned}
& \frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}} \quad(0<x<1, \quad t>0) \\
& u(x, 0)=-\frac{1}{3} x+\frac{1}{2} x^{2}-\frac{1}{6} x^{3}+2 \sin \pi x \quad(0<x<1) \\
& u(0, t)=t, \quad u(1, t)=0
\end{aligned}
$$

